Search for dark matter in association with an energetic photon in pp collisions at √s = 13 TeV with the ATLAS detector
Name:
Aad2021_Article_SearchForDarkM ...
Size:
1.887Mb
Format:
PDF
Description:
Final Published Version
Author
ATLAS CollaborationAffiliation
Department of Physics, University of ArizonaIssue Date
2021
Metadata
Show full item recordCitation
Aad, G., Abbott, B., Abbott, D. C., Abed Abud, A., Abeling, K., Abhayasinghe, D. K., Abidi, S. H., AbouZeid, O. S., Abraham, N. L., Abramowicz, H., Abreu, H., Abulaiti, Y., Acharya, B. S., Achkar, B., Adam, L., Adam Bourdarios, C., Adamczyk, L., Adamek, L., Adelman, J., … The ATLAS collaboration. (2021). Search for dark matter in association with an energetic photon in pp collisions at √s = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2021(2).Journal
Journal of High Energy PhysicsRights
Copyright © CERN, for the benefit of the ATLAS Collaboration. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
A search for dark matter is conducted in final states containing a photon and missing transverse momentum in proton-proton collisions at s = 13 TeV. The data, collected during 2015–2018 by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 fb−1. No deviations from the predictions of the Standard Model are observed and 95% confidence-level upper limits between 2.45 fb and 0.5 fb are set on the visible cross section for contributions from physics beyond the Standard Model, in different ranges of the missing transverse momentum. The results are interpreted as 95% confidence-level limits in models where weakly interacting dark-matter candidates are pair-produced via an s-channel axial-vector or vector mediator. Dark-matter candidates with masses up to 415 (580) GeV are excluded for axial-vector (vector) mediators, while the maximum excluded mass of the mediator is 1460 (1470) GeV. In addition, the results are expressed in terms of 95% confidence-level limits on the parameters of a model with an axion-like particle produced in association with a photon, and are used to constrain the coupling gaZγ of an axion-like particle to the electroweak gauge bosons. [Figure not available: see fulltext.] © 2021, The Author(s).Note
Open access journalISSN
1029-8479Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1007/JHEP02(2021)226
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © CERN, for the benefit of the ATLAS Collaboration. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0).