On the Calibration of Spatially Distributed Hydrologic Models for Poorly Gauged Basins: Exploiting Information from Streamflow Signatures and Remote Sensing-Based Evapotranspiration Data
Affiliation
Department of Hydrology and Atmospheric Sciences, The University of ArizonaIssue Date
2022Keywords
evapotranspirationflow duration curve
hydrologic modeling
multi-objective and multi-variable calibration
poorly gauged basin
remote sensing
SWAT
Metadata
Show full item recordPublisher
MDPICitation
Alemayehu, T., Gupta, H. V., van Griensven, A., & Bauwens, W. (2022). On the Calibration of Spatially Distributed Hydrologic Models for Poorly Gauged Basins: Exploiting Information from Streamflow Signatures and Remote Sensing-Based Evapotranspiration Data. Water (Switzerland), 14(8).Journal
Water (Switzerland)Rights
Copyright © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Spatially distributed hydrologic models are useful for understanding the water balance dynamics of catchments under changing conditions, thereby providing important information for water resource management and decision making. However, in poorly gauged basins, the absence of reliable and overlapping in situ hydro-meteorological data makes the calibration and evaluation of such models quite challenging. Here, we explored the potential of using streamflow signatures extracted from historical (not current) streamflow data, along with current remote sensing-based evapotranspiration data, to constrain the parameters of a spatially distributed Soil and Water Assessment Tool (SWAT) model of the Mara River Basin (Kenya/Tanzania) that is forced by satellite-based rainfall. The result is a reduced bias of the simulated estimates of streamflow and evapotranspiration. In addition, the simulated water balance dynamics better reflect underlying governing factors such as soil type, land cover and climate at both annual and seasonal time scales, indicating the structural and behavioral consistency of the calibrated model. This study demonstrates that the judicious use of available information can help to facilitate meaningful calibration and evaluation of hydrologic models to support decision making in poorly gauged river basins around the world. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Note
Open access journalISSN
2073-4441Version
Final published versionae974a485f413a2113503eed53cd6c53
10.3390/w14081252
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).