Show simple item record

dc.contributor.authorXiao, H.
dc.contributor.authorYin, S.
dc.contributor.authorWu, H.
dc.contributor.authorWang, H.
dc.contributor.authorLiang, R.
dc.date.accessioned2022-06-13T23:24:46Z
dc.date.available2022-06-13T23:24:46Z
dc.date.issued2022
dc.identifier.citationXiao, H., Yin, S., Wu, H., Wang, H., & Liang, R. (2022). Theoretical model and digital extraction of subsurface damage in ground fused silica. Optics Express, 30(11), 17999–18017.
dc.identifier.issn1094-4087
dc.identifier.doi10.1364/OE.459132
dc.identifier.urihttp://hdl.handle.net/10150/665169
dc.description.abstractBased on the fracture mechanics and grinding kinematics, a theoretical model is developed to determine various subsurface damage (SSD) parameters and roughness Rz of the ground brittle material with consideration of the material removal mode and spring back. Based on the image processing, a digital method is proposed to extract various SSD parameters from the cross-section micrograph of the ground sample. To verify the model and method, many fused silica samples are ground under different processing parameters, and their SSD depth and roughness Rz are measured. The research results show the average SSD depth (SSDa) can be expressed as SSDa = χ1Rz4/3 + χ2Rz (χ1 and χ2 are coefficients). The SSDa is closer to half of the maximum SSD depth (SSDm) as the wheel speed decreases or the grinding depth, feed speed, or abrasive diameter increases. The SSD length or density basically increases linearly with the increase of the SSDm. The digital method is reliable with a largest relative error of 6.65% in SSD depth, extraction speed of about 1.63s per micrograph, and good robustness to the micrograph size and small-scale residue interference. The research will contribute to the evaluation of SSDs and the optimization of the grinding process of fused silica. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
dc.language.isoen
dc.publisherOptica Publishing Group (formerly OSA)
dc.rightsCopyright © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.titleTheoretical model and digital extraction of subsurface damage in ground fused silica
dc.typeArticle
dc.typetext
dc.contributor.departmentCollege of Optical Sciences, University of Arizona
dc.identifier.journalOptics Express
dc.description.noteOpen access journal
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
dc.eprint.versionFinal published version
dc.source.journaltitleOptics Express
refterms.dateFOA2022-06-13T23:24:46Z


Files in this item

Thumbnail
Name:
oe-30-11-17999.pdf
Size:
5.462Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record