Name:
Geophysical Research Letters - ...
Size:
5.642Mb
Format:
PDF
Description:
Final Published Version
Affiliation
Department of Geosciences, University of ArizonaIssue Date
2022
Metadata
Show full item recordPublisher
John Wiley and Sons IncCitation
Meegan Kumar, D., Tierney, J. E., Bhattacharya, T., Zhu, J., & Murray, J. W. (2022). Glacial Warming in the Eastern Pacific Warm Pool. Geophysical Research Letters, 49(10).Journal
Geophysical Research LettersRights
Copyright © 2022. American Geophysical Union. All Rights Reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The Eastern Pacific Warm Pool (EPWP) modulates global climate through its connection with tropical Pacific circulation, but sparse paleoceanographic data from this region limits our understanding of its role in past climate variability. We present a 144 kyr alkenone-sea surface temperature (SST) reconstruction from core NH22P, located in the northern EPWP, that shows local warming occurred during periods of global cooling. Climate model simulations of the Last Glacial Maximum indicate that both ice sheet and greenhouse gas forcing slowed wind speeds over the EPWP, which attenuated glacial cooling of local SST via the wind-evaporation-SST feedback. Spectral analysis further suggests precessional pacing of the warming spikes. Vernal equinox insolation could explain this pacing as direct shortwave heating during boreal spring would have contributed to the early seasonal intensification of the EPWP. This work provides crucial constraints on tropical Pacific glacial climate variability and highlights the unique response of the EPWP to global climate forcings. © 2022. American Geophysical Union. All Rights Reserved.Note
6 month embargo; first published: 10 May 2022ISSN
0094-8276Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1029/2022GL098830