• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Simulations and analysis of fluorescence effects in semiconductor x-ray and gamma-ray detectors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    120314P.pdf
    Size:
    784.0Kb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Cronin, K.P.
    Kupinski, M.A.
    Barber, H.B.
    Furenlid, L.R.
    Affiliation
    College of Optical Sciences, University of Arizona
    Department of Medical Imaging, University of Arizona
    Issue Date
    2022
    Keywords
    K X-ray Fluorescence
    Semiconductor Detectors
    SPECT
    
    Metadata
    Show full item record
    Publisher
    SPIE
    Citation
    Cronin, K. P., Kupinski, M. A., Barber, H. B., & Furenlid, L. R. (2022). Simulations and analysis of fluorescence effects in semiconductor x-ray and gamma-ray detectors. Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 12031.
    Journal
    Progress in Biomedical Optics and Imaging - Proceedings of SPIE
    Rights
    Copyright © 2022 SPIE.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Photon-counting semiconductor detectors are a key technology for reducing dose in clinical x-ray imaging procedures, such as CT, and improving performance in gamma-ray imaging procedures such as SPECT. These detectors offer excellent energy resolution and high spatial resolution. To stop high-energy photons, high-Z semiconductors must be used, such as CdTe, TlBr or other emerging candidates. These crystals often suffer from poor hole transport due to hole trapping, which can greatly affect signal, even when data is primarily collected from anodes. There are many interesting challenges in the production of these detectors as well as in developing complete quantitative models of the photon-matter interaction, charge transport, and signal induction. Prior work in our group has focused on optimal ways to estimate photon interaction parameters (x,y,z) and energy (E). This work is based on statistical models and calibration data. In recent work we are exploring a method to account for k x-ray fluorescence and to model signals induced on a double-sided strip detector. Our approach is Monte-Carlo sampling of interaction details, followed by charge transport and signal induction modeling via weighting potentials. First our simulation creates first and second order statistics for three charge induction cases: simple transport, charge sharing, and x-ray fluorescence. Using mean signals and covariance matrices from these cases we build a likelihood that can be used with maximum likelihood methods to estimate the primary interaction location and classify whether the event's energy deposition involved fluorescence. In planned work we will test the model against experimental semiconductor detector data. © 2022 SPIE.
    Note
    Immediate access
    ISSN
    1605-7422
    ISBN
    9781510649378
    DOI
    10.1117/12.2610686
    Version
    Final published version
    ae974a485f413a2113503eed53cd6c53
    10.1117/12.2610686
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.