All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data
Name:
PhysRevD.105.102001.pdf
Size:
2.100Mb
Format:
PDF
Description:
Final Published Version
Publisher
American Physical SocietyCitation
Abbott, R., Abe, H., Acernese, F., Ackley, K., Adhikari, N., Adhikari, R. X., Adkins, V. K., Adya, V. B., Affeldt, C., Agarwal, D., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O. D., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., … (The LIGO Scientific Collaboration, the V. C., and the KAGRA Collaboration). (2022). All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data. Physical Review D, 105(10).Journal
Physical Review DRights
Copyright © 2022 American Physical Society.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
This paper describes the first all-sky search for long-duration, quasimonochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20 to 610 Hz, over a small frequency derivative range around zero, and use multiple frequency resolutions to be robust towards possible signal frequency wanderings. Outliers from this search are followed up using two different methods, one more suitable for nearly monochromatic signals, and the other more robust towards frequency fluctuations. We do not find any evidence for such signals and set upper limits on the signal strain amplitude, the most stringent being ≈10-25 at around 130 Hz. We interpret these upper limits as both an "exclusion region"in the boson mass/black hole mass plane and the maximum detectable distance for a given boson mass, based on an assumption of the age of the black hole/boson cloud system. © 2022 American Physical Society. All rights reserved.Note
Immediate accessISSN
2470-0010Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1103/PhysRevD.105.102001