Atmospheric Characterization of Hot Jupiter CoRoT-1 b Using the Wide Field Camera 3 on the Hubble Space Telescope
Name:
Glidic_2022_AJ_164_19.pdf
Size:
6.406Mb
Format:
PDF
Description:
Final Published Version
Affiliation
Steward Observatory, University of ArizonaIssue Date
2022
Metadata
Show full item recordPublisher
American Astronomical SocietyCitation
Glidic, K., Schlawin, E., Wiser, L., Zhou, Y., Deming, D., & Line, M. (2022). Atmospheric Characterization of Hot Jupiter CoRoT-1 b Using the Wide Field Camera 3 on the Hubble Space Telescope. Astronomical Journal, 164(1).Journal
Astronomical JournalRights
Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Exoplanet CoRoT-1 b is intriguing because we predict it to be a transitional planet between hot Jupiters (equilibrium temperatures ∼1500 K) and ultrahot Jupiters (equilibrium temperatures >2000 K). In 2012, observations of CoRoT-1 b included one primary transit and three secondary eclipses with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) combined with the G141 grism (1.1-1.7 μm) in stare mode. We aimed to further investigate CoRoT-1 b through its secondary eclipses, producing spectrophotometric light curves corrected for charge trapping, also known as the ramp effect in time-series observations with the WFC3. We found that, when correcting for the ramp effect and using the typically discarded first orbit, we are better capable of constraining and optimizing the emission and transmission spectra. We did a grid retrieval in this transitional temperature regime and found the spectra for CoRoT-1 b to be featureless and to agree with an inverted temperature-pressure (T-P) profile. We note, however, that the contribution function for the WFC3 indicates pressures probed near 10-3 to 100 bar, which correspond to a nearly isothermal region in our T-P profile, thereby indicating that the inversion at high altitude is model-dependent. Despite no distinct features, the analysis done on CoRoT-1 b paves the way to high-precision results with stare mode spectroscopy. As a new generation of observations from the James Webb Space Telescope (JWST) approaches, CoRoT-1 b might be an interesting follow-up target because the time-series spectroscopic modes of JWST's NIRSpec, MIRI, and NIRCam instruments will be analogous to HST's stare mode. © 2022. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
0004-6256Version
Final published versionae974a485f413a2113503eed53cd6c53
10.3847/1538-3881/ac6cdb
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.