A Library of Synthetic X-Ray Spectra for Fitting Tidal Disruption Events
Name:
Wen_2022_ApJ_933_31.pdf
Size:
3.285Mb
Format:
PDF
Description:
Final Published Version
Publisher
Institute of PhysicsCitation
Wen, S., Jonker, P. G., Stone, N. C., Zabludoff, A. I., & Cao, Z. (2022). A Library of Synthetic X-Ray Spectra for Fitting Tidal Disruption Events. Astrophysical Journal, 933(1).Journal
Astrophysical JournalRights
Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We present a tabulated version of our slim-disk model for fitting tidal disruption events (TDEs). We create a synthetic X-ray spectral library by ray-tracing stationary general relativistic slim disks and including gravitational redshift, Doppler, and lensing effects self-consistently. We introduce the library to reduce computational expense and increase access for fitting future events. Fitting requires interpolation between the library spectra; the interpolation error in the synthetic flux is generally <10% (it can rise to 40% when the disk is nearly edge-on). We fit the X-ray spectra of the TDEs ASASSN-14li and ASASSN-15oi, successfully reproducing our earlier constraints on black hole mass M • and spin a • from full on-the-fly ray-tracing. We use the library to fit mock observational data to explore the degeneracies among parameters, finding that (1) spectra from a hotter thermal disk and edge-on inclination angle offer tighter constraints on M • and a •; (2) the constraining power of spectra on M • and a • increases as a power law with the number of X-ray counts, and the index of the power law is higher for hotter thermal disk spectra; (3) multiepoch X-ray spectra partially break the degeneracy between M • and a •; (4) the time-dependent level of X-ray absorption can be constrained from spectral fitting. The tabulated model and slim-disk model are available at https://doi.org/10.25739/hfhz-xn60. © 2022. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
0004-637XVersion
Final published versionae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/ac70c5
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.