Show simple item record

dc.contributor.authorKirschler, S.
dc.contributor.authorVoigt, C.
dc.contributor.authorAnderson, B.
dc.contributor.authorCampos Braga, R.
dc.contributor.authorChen, G.
dc.contributor.authorCorral, A.F.
dc.contributor.authorCrosbie, E.
dc.contributor.authorDadashazar, H.
dc.contributor.authorFerrare, R.A.
dc.contributor.authorHahn, V.
dc.contributor.authorHendricks, J.
dc.contributor.authorKaufmann, S.
dc.contributor.authorMoore, R.
dc.contributor.authorPöhlker, M.L.
dc.contributor.authorRobinson, C.
dc.contributor.authorScarino, A.J.
dc.contributor.authorSchollmayer, D.
dc.contributor.authorShook, M.A.
dc.contributor.authorThornhill, K.L.
dc.contributor.authorWinstead, E.
dc.contributor.authorZiemba, L.D.
dc.contributor.authorSorooshian, A.
dc.date.accessioned2022-08-01T20:17:07Z
dc.date.available2022-08-01T20:17:07Z
dc.date.issued2022
dc.identifier.citationKirschler, S., Voigt, C., Anderson, B., Campos Braga, R., Chen, G., Corral, A. F., Crosbie, E., Dadashazar, H., Ferrare, R. A., Hahn, V., Hendricks, J., Kaufmann, S., Moore, R., Pöhlker, M. L., Robinson, C., Scarino, A. J., Schollmayer, D., Shook, M. A., Thornhill, K. L., … Sorooshian, A. (2022). Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic. Atmospheric Chemistry and Physics, 22(12), 8299–8319.
dc.identifier.issn1680-7316
dc.identifier.doi10.5194/acp-22-8299-2022
dc.identifier.urihttp://hdl.handle.net/10150/665476
dc.description.abstractTo determine the impact of dynamic and aerosol processes on marine low clouds, we examine the seasonal impact of updraft speed w and cloud condensation nuclei concentration at 0.43 % supersaturation (NCCN0.43%) on the cloud droplet number concentration (NC) of low-level clouds over the western North Atlantic Ocean. Aerosol and cloud properties were measured with instruments on board the NASA LaRC Falcon HU-25 during the ACTIVATE (Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment) mission in summer (August) and winter (February-March) 2020. The data are grouped into different NCCN0.43% loadings, and the density functions of NC and w near the cloud bases are compared. For low updrafts (w < 1.3 ms-1), NC in winter is mainly limited by the updraft speed and in summer additionally by aerosols. At larger updrafts (w > 3 ms-1), NC is impacted by the aerosol population, while at clean marine conditions cloud nucleation is aerosol-limited, and for high NCCN0.43% it is influenced by aerosols and updraft. The aerosol size distribution in winter shows a bimodal distribution in clean marine environments, which transforms to a unimodal distribution in high NCCN0.43% due to chemical and physical aerosol processes, whereas unimodal distributions prevail in summer, with a significant difference in their aerosol concentration and composition. The increase of NCCN0.43% is accompanied with an increase of organic aerosol and sulfate compounds in both seasons. We demonstrate that NC can be explained by cloud condensation nuclei activation through upwards processed air masses with varying fractions of activated aerosols. The activation highly depends on w and thus supersaturation between the different seasons, while the aerosol size distribution additionally affects NC within a season. Our results quantify the seasonal influence of w and NCCN0.43% on NC and can be used to improve the representation of low marine clouds in models. © 2022 Simon Kirschler et al.
dc.language.isoen
dc.publisherCopernicus GmbH
dc.rightsCopyright © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.titleSeasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic
dc.typeArticle
dc.typetext
dc.contributor.departmentDepartment of Chemical and Environmental Engineering, University of Arizona
dc.contributor.departmentDepartment of Hydrology and Atmospheric Sciences, University of Arizona
dc.identifier.journalAtmospheric Chemistry and Physics
dc.description.noteOpen access journal
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
dc.eprint.versionFinal published version
dc.source.journaltitleAtmospheric Chemistry and Physics
refterms.dateFOA2022-08-01T20:17:07Z


Files in this item

Thumbnail
Name:
acp-22-8299-2022.pdf
Size:
3.124Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record

Copyright © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.
Except where otherwise noted, this item's license is described as Copyright © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.