Cloud phase and macrophysical properties over the Southern Ocean during the MARCUS field campaign
Affiliation
Department of Hydrology and Atmospheric Sciences, University of ArizonaIssue Date
2022
Metadata
Show full item recordPublisher
Copernicus GmbHCitation
Xi, B., Dong, X., Zheng, X., & Wu, P. (2022). Cloud phase and macrophysical properties over the Southern Ocean during the MARCUS field campaign. Atmospheric Measurement Techniques, 15(12), 3761–3777.Rights
Copyright © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
To investigate the cloud phase and macrophysical properties over the Southern Ocean (SO), the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) was installed on the Australian icebreaker research vessel (R/V) Aurora Australis during the Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (MARCUS) field campaign (41 to 69°S, 60 to 160°E) from October 2017 to March 2018. To examine cloud properties over the midlatitude and polar regions, the study domain is separated into the northern (NSO) and southern (SSO) parts of the SO, with a demarcation line of 60°S. The total cloud fractions (CFs) were 77.9%, 67.6%, and 90.3% for the entire domain, NSO and SSO, respectively, indicating that higher CFs were observed in the polar region. Low-level clouds and deep convective clouds are the two most common cloud types over the SO. A new method was developed to classify liquid, mixed-phase, and ice clouds in single-layered, low-level clouds (LOW), where mixed-phase clouds dominate with an occurrence frequency (Freq) of 54.5%, while the Freqs of the liquid and ice clouds were 10.1% (most drizzling) and 17.4% (least drizzling). The meridional distributions of low-level cloud boundaries are nearly independent of latitude, whereas the cloud temperatures increased by ∼1/48K, and atmospheric precipitable water vapor increased from ∼1/45mm at 69°S to ∼1/418mm at 43°S. The mean cloud liquid water paths over NSO were much larger than those over SSO. Most liquid clouds occurred over NSO, with very few over SSO, whereas more mixed-phase clouds occurred over SSO than over NSO. There were no significant differences for the ice cloud Freq between NSO and SSO. The ice particle sizes are comparable to cloud droplets and drizzle drops and well mixed in the cloud layer. These results will be valuable for advancing our understanding of the meridional and vertical distributions of clouds and can be used to improve model simulations over the SO. © 2022 Baike Xi et al.Note
Open access journalISSN
1867-1381Version
Final published versionae974a485f413a2113503eed53cd6c53
10.5194/amt-15-3761-2022
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.