Time Series of Remote Sensing Data for Interaction Analysis of the Vegetation Coverage and Dust Activity in the Middle East
Name:
remotesensing-14-02963-v3.pdf
Size:
1.948Mb
Format:
PDF
Description:
Final Published Version
Affiliation
Department of Chemical and Environmental Engineering, University of ArizonaDepartment of Hydrology and Atmospheric Sciences, University of Arizona
Issue Date
2022
Metadata
Show full item recordPublisher
MDPICitation
Namdari, S., Alnasrawi, A. I. Z., Ghorbanzadeh, O., Sorooshian, A., Kamran, K. V., & Ghamisi, P. (2022). Time Series of Remote Sensing Data for Interaction Analysis of the Vegetation Coverage and Dust Activity in the Middle East. Remote Sensing, 14(13).Journal
Remote SensingRights
Copyright © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Motivated by the lack of research on land cover and dust activity in the Middle East, this study seeks to increase the understanding of the sensitivity of dust centers to climatic and surface conditions in this specific region. In this regard, we explore vegetation cover and dust emission interactions using 16‐day long‐term Normalized Difference Vegetation Index (NDVI) data and daily Aerosol Optical Depth (AOD) data from Moderate Resolution Imaging Spectroradiometer (MODIS) and conduct spatiotemporal and statistical analyses. Eight major dust hotspots were identified based on long‐term AOD data (2000–2019). Despite the relatively uniform climate conditions pre-vailing throughout the region during the study period, there is considerable spatial variability in interannual relationships between AOD and NDVI. Three subsets of periods (2000–2006, 2007–2013, 2014–2019) were examined to assess periodic spatiotemporal changes. In the second period (2007– 2013), AOD increased significantly (6% to 32%) across the studied hotspots, simultaneously with a decrease in NDVI (−0.9% to −14.3%) except in Yemen−Oman. Interannual changes over 20 years showed a strong relationship between reduced vegetation cover and increased dust intensity. The correlation between NDVI and AOD (−0.63) for the cumulative region confirms the significant effect of vegetation canopy on annual dust fluctuations. According to the results, changes in vegetation cover have an essential role in dust storm fluctuations. Therefore, this factor must be regarded along with wind speed and other climate factors in Middle East dust hotspots related to research and management efforts. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Note
Open access journalISSN
2072-4292Version
Final published versionae974a485f413a2113503eed53cd6c53
10.3390/rs14132963
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).