• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • MS-GIST (Master's Reports)
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • MS-GIST (Master's Reports)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Modeling Postfire Soil Erosion and Sediment Deposition on the Tonto National Monument with the Unit Stream Power Erosion and Deposition Model

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    MS-GIST_2022_Macias.pdf
    Size:
    8.344Mb
    Format:
    PDF
    Description:
    MS-GIST Report
    Download
    Author
    Macias, Michael
    Issue Date
    2022
    Keywords
    Soil Erosion
    Sediment Deposition
    Tonto National Monument
    USPED Model
    Postfire
    Advisor
    Sanchez, Fernando
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Collection Information
    This item is part of the MS-GIST Master's Reports collection. For more information about items in this collection, please contact the UA Campus Repository at repository@u.library.arizona.edu.
    Abstract
    A major consequence of wildfire events is the acceleration of soil erosion by surface runoff. During a rainfall event, soil may become detached, transported, and eventually deposited elsewhere on the landscape. One approach to predict whether and where this erosion process could occur requires determining six empirically established factors, namely, rainfall erosivity, soil erodibility, slope length, slope steepness, vegetation cover, and erosion management methods. This project analyzed these landscape factors on the Tonto National Monument, an archaeologically rich site containing 14th century cliff dwellings in central Arizona’s Tonto Basin. In the summer of 2019, over 80% of the monument burned, threatening its natural and cultural resources both from the fire itself and from the postfire erosion that followed. Chosen for its ability to predict both soil erosion and sediment deposition, the Unit-Stream-Power-Erosion-and-Deposition Model identified areas of the monument where the erosion process may have occurred and to what extent. This project used high resolution data to obtain each factor in raster format followed by further calculations based on changes in sediment transport capacity using a Geographic Information System (GIS) called ArcGIS Pro. The model predicted that 13.5% of the monument had high erosion, 27% moderate erosion, 15.5% low erosion, 8.7% stable, 3.2% low deposition, 6.2% moderate deposition, and 25.7% high deposition. Although this project’s methodology focused on the 2019 fire event, it offers resource managers on the monument an approach to monitor and mitigate potential future fire events, reducing costs and focusing efforts to areas of highest risk.
    Type
    Electronic Report
    text
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Geographic Information Systems Technology
    Degree Grantor
    University of Arizona
    Collections
    MS-GIST (Master's Reports)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.