Show simple item record

dc.contributor.advisorHua, Hong
dc.contributor.authorKatz, Jeremy
dc.creatorKatz, Jeremy
dc.date.accessioned2022-08-18T22:51:36Z
dc.date.available2022-08-18T22:51:36Z
dc.date.issued2022
dc.identifier.citationKatz, Jeremy. (2022). A High-Throughput Multi-Resolution Foveated Laparoscope (Doctoral dissertation, University of Arizona, Tucson, USA).
dc.identifier.urihttp://hdl.handle.net/10150/665641
dc.description.abstractMinimally invasive surgery exhibits many advantages compared to open surgery, but it is limited in safety and efficiency by contemporary laparoscopes due to their non-stationary nature and inherently exhibited trade-off between resolution and instantaneous field of view (FOV). These limitations increase the likelihoods of adverse patient outcomes resultant from lacerations or electrical burns outside of the laparoscope FOV. Furthermore, surgical team members may experience fatigue or injury when sacrificing ergonomics to accommodate laparoscope positioning. To address the limitations of contemporary laparoscopes, a multi-resolution foveated laparoscope (MRFL) was proposed and developed. The MRFL features simultaneous optical imaging of a high-resolution narrow FOV (like that of a traditional laparoscope) and a lower resolution wide-angle view. The most recent MRFL design includes electrically tunable lenses (ETLs) and a dual-axis scanning device that respectively facilitate optical zooming and panning of the high-resolution view to any region within the wide-angle view. A functioning MRFL prototype was made from the design as a proof of concept, but its utility is limited by its imaging performance. In this dissertation, the advancement of MRFL imaging performance is discussed at length. Using the same lens design as the system discussed above, an improved prototype with higher image fidelity was developed for use in a porcine surgery study. Further improvements made in support of the study facilitated successful utilization of the prototype during in-vivo testing, but participant feedback confirms that its utility is still predominantly limited by its image quality. Following the study, a high-throughput multi-resolution foveated laparoscope (HT-MRFL) was designed to address the imaging limitations of the MRFL prototype while exhibiting reduced weight and size. An HT-MRFL benchtop prototype has been constructed using 3D printed opto-mechanics and its performance is characterized and comparatively analyzed with respect to the previous MRFL prototype.
dc.language.isoen
dc.publisherThe University of Arizona.
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectendoscope
dc.subjectengineering
dc.subjectimaging
dc.subjectlaparoscope
dc.subjectsurgery
dc.subjectthroughput
dc.titleA High-Throughput Multi-Resolution Foveated Laparoscope
dc.typetext
dc.typeElectronic Dissertation
thesis.degree.grantorUniversity of Arizona
thesis.degree.leveldoctoral
dc.contributor.committeememberSchwiegerling, Jim
dc.contributor.committeememberSawyer, Travis
dc.contributor.committeememberBarton, Jennifer
thesis.degree.disciplineGraduate College
thesis.degree.disciplineOptical Sciences
thesis.degree.namePh.D.
refterms.dateFOA2022-08-18T22:51:36Z


Files in this item

Thumbnail
Name:
azu_etd_19794_sip1_m.pdf
Size:
56.16Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record