Show simple item record

dc.contributor.advisorTierney, Jessica E.
dc.contributor.authorMartinez Sosa, Pablo
dc.creatorMartinez Sosa, Pablo
dc.date.accessioned2022-08-18T22:54:20Z
dc.date.available2022-08-18T22:54:20Z
dc.date.issued2022
dc.identifier.citationMartinez Sosa, Pablo. (2022). Refinement of the Branched GDGT Paleoenvironmental Proxy through Complementary Analytical Approaches (Doctoral dissertation, University of Arizona, Tucson, USA).
dc.identifier.urihttp://hdl.handle.net/10150/665682
dc.description.abstractMolecular fossils, known as biomarkers, are useful tools that allow us to make robust inferences about past climate through the geological record. Among these, glycerol dialkyl glycerol tetraethers (GDGTs) stand out as presenting sensitivity to environmental changes while being globally abundant in environments ranging from marine sediments to soils. The two main types of GDGTs, branched and isoprenoid, are generally considered to be sensitive to environmental parameters in specific settings. In marine sediments isoGDGTs respond to water temperature, while in terrestrial environments brGDGTs respond to temperature and pH. While the response of GDGTs to the environment has been empirically demonstrated, some uncertainties remain on the mechanism through which they capture the environment. This is particularly notable for brGDGTs, for which the source organisms are only partially understood. A better understanding on the production of these molecules can help us better understand the Earth's Climate System. The objective of this dissertation is to clarify and quantify the influence that environmental parameters have on the distribution of brGDGTs, particularly in freshwater environments. The results from this are then applied to a larger scale as the basis to generate a global brGDGT calibration for lakes. Finally, the unique response and distribution of all GDGTs observed in the previous chapter is used to generate a classification algorithm for both marine and terrestrial environments in the geological record. We hope that this work generates a better understanding of the biology and ecology of the GDGT source organisms, and how we can use this knowledge to reconstruct past environments.
dc.language.isoen
dc.publisherThe University of Arizona.
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectbiomarkers
dc.subjectbrGDGT
dc.subjectlakes
dc.titleRefinement of the Branched GDGT Paleoenvironmental Proxy through Complementary Analytical Approaches
dc.typetext
dc.typeElectronic Dissertation
thesis.degree.grantorUniversity of Arizona
thesis.degree.leveldoctoral
dc.contributor.committeememberCohen, Andrew
dc.contributor.committeememberThompson, Diane
dc.contributor.committeememberMeredith, Laura
thesis.degree.disciplineGraduate College
thesis.degree.disciplineGeosciences
thesis.degree.namePh.D.
refterms.dateFOA2022-08-18T22:54:20Z


Files in this item

Thumbnail
Name:
azu_etd_19876_sip1_m.pdf
Size:
6.373Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record