Show simple item record

dc.contributor.authorYazdani-Abyaneh, A.-H.
dc.contributor.authorKrunz, M.
dc.date.accessioned2022-08-25T00:51:52Z
dc.date.available2022-08-25T00:51:52Z
dc.date.issued2022
dc.identifier.citationYazdani-Abyaneh, A.-H., & Krunz, M. (2022). Automatic Machine Learning for Multi-Receiver CNN Technology Classifiers. WiseML 2022 - Proceedings of the 2022 ACM Workshop on Wireless Security and Machine Learning, 39–44.
dc.identifier.isbn9781450392778
dc.identifier.doi10.1145/3522783.3529524
dc.identifier.urihttp://hdl.handle.net/10150/665920
dc.description.abstractConvolutional Neural Networks (CNNs) are one of the most studied family of deep learning models for signal classification, including modulation, technology, detection, and identification. In this work, we focus on technology classification based on raw I/Q samples collected from multiple synchronized receivers. As an example use case, we study protocol identification of Wi-Fi, LTE-LAA, and 5G NR-U technologies that coexist over the 5 GHzUnlicensed National Information Infrastructure (U-NII) bands. Designing and training accurate CNN classifiers involve significant time and effort that goes to fine-tuning a model's architectural settings (e.g., number of convolutional layers and their filter size) and determining the appropriate hyperparameter configurations, such as learning rate and batch size. We tackle the former by defining architectural settings themselves as hyperparameters. We attempt to automatically optimize these architectural parameters, along with other preprocessing (e.g., number of I/Q samples within each classifier input) and learning hyperparameters, by forming aHyperparameter Optimization (HyperOpt) problem, which we solve in a near-optimal fashion using the Hyperband algorithm. The resulting near-optimal CNN (OCNN) classifier is then used to study classification accuracy for OTA as well as simulations datasets, considering various SNR values. We show that using a larger number of receivers to construct multi-channel inputs for CNNs does not necessarily improve classification accuracy. Instead, this number should be defined as a preprocessing hyperparameter to be optimized via Hyperband. OTA results reveal that our OCNN classifiers improve classification accuracy by $24.58%$ compared to manually tuned CNNs. We also study the effect of min-max normalization of I/Q samples within each classifier's input on generalization accuracy over simulated datasets SNRs other than training set's SNR, and show an average of $108.05%$ improvement when I/Q samples are normalized. © 2022 Owner/Author.
dc.language.isoen
dc.publisherAssociation for Computing Machinery, Inc
dc.rightsCopyright © 2022 Copyright held by the owner/author(s). This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subject5g nr-u
dc.subjectautoml
dc.subjectcnn
dc.subjecthyperband
dc.subjecthyperopt
dc.subjectlte-laa
dc.subjectmulti-receiver
dc.subjectsdr
dc.subjectsignal classification
dc.subjectwi-fi
dc.titleAutomatic Machine Learning for Multi-Receiver CNN Technology Classifiers
dc.typeProceedings
dc.typetext
dc.contributor.departmentUniversity of Arizona
dc.identifier.journalWiseML 2022 - Proceedings of the 2022 ACM Workshop on Wireless Security and Machine Learning
dc.description.noteOpen access article
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
dc.eprint.versionFinal published version
dc.source.journaltitleWiseML 2022 - Proceedings of the 2022 ACM Workshop on Wireless Security and Machine Learning
refterms.dateFOA2022-08-25T00:51:52Z


Files in this item

Thumbnail
Name:
3522783.3529524.pdf
Size:
3.983Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record

Copyright © 2022 Copyright held by the owner/author(s). This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.
Except where otherwise noted, this item's license is described as Copyright © 2022 Copyright held by the owner/author(s). This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.