Measurement of the energy asymmetry in tt¯ j production at 13 TeV with the ATLAS experiment and interpretation in the SMEFT framework
Name:
s10052-022-10101-w.pdf
Size:
5.452Mb
Format:
PDF
Description:
Final Published Version
Author
ATLAS CollaborationAffiliation
Department of Physics, University of ArizonaIssue Date
2022
Metadata
Show full item recordCitation
Aad, G., Abbott, B., Abbott, D. C., Abud, A. A., Abeling, K., Abhayasinghe, D. K., Abidi, S. H., Aboulhorma, A., Abramowicz, H., Abreu, H., Abulaiti, Y., Hoffman, A. C. A., Acharya, B. S., Achkar, B., Adam, L., Bourdarios, C. A., Adamczyk, L., Adamek, L., Addepalli, S. V., … ATLAS Collaboration. (2022a). Measurement of the energy asymmetry in tt¯ j production at 13 TeV with the ATLAS experiment and interpretation in the SMEFT framework. European Physical Journal C, 82(4).Journal
European Physical Journal CRights
Copyright © CERN for the benefit of the ATLAS collaboration 2022. This article is licensed under a Creative Commons Attribution 4.0 International License.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
A measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139fb-1 of data collected by the ATLAS detector at the Large Hadron Collider during pp collisions at s=13TeV. The observable measures the different probability of top and antitop quarks to have the higher energy as a function of the jet scattering angle with respect to the beam axis. The energy asymmetry is measured in the semileptonic tt¯ decay channel, and the hadronically decaying top quark must have transverse momentum above 350GeV. The results are corrected for detector effects to particle level in three bins of the scattering angle of the associated jet. The measurement agrees with the SM prediction at next-to-leading-order accuracy in quantum chromodynamics in all three bins. In the bin with the largest expected asymmetry, where the jet is emitted perpendicular to the beam, the energy asymmetry is measured to be - 0.043 ± 0.020 , in agreement with the SM prediction of - 0.037 ± 0.003. Interpreting this result in the framework of the Standard Model effective field theory (SMEFT), it is shown that the energy asymmetry is sensitive to the top-quark chirality in four-quark operators and is therefore a valuable new observable in global SMEFT fits. © 2022, The Author(s).Note
Open access journalISSN
1434-6044Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1140/epjc/s10052-022-10101-w
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © CERN for the benefit of the ATLAS collaboration 2022. This article is licensed under a Creative Commons Attribution 4.0 International License.