Show simple item record

dc.contributor.authorHowes, G.G.
dc.contributor.authorVerniero, J.L.
dc.contributor.authorLarson, D.E.
dc.contributor.authorBale, S.D.
dc.contributor.authorKasper, J.C.
dc.contributor.authorGoetz, K.
dc.contributor.authorKlein, K.G.
dc.contributor.authorWhittlesey, P.L.
dc.contributor.authorLivi, R.
dc.contributor.authorRahmati, A.
dc.contributor.authorChen, C.H.K.
dc.contributor.authorWilson, L.B.
dc.contributor.authorAlterman, B.L.
dc.contributor.authorWicks, R.T.
dc.date.accessioned2022-08-25T00:52:07Z
dc.date.available2022-08-25T00:52:07Z
dc.date.issued2022
dc.identifier.citationHowes, G. G., Verniero, J. L., Larson, D. E., Bale, S. D., Kasper, J. C., Goetz, K., Klein, K. G., Whittlesey, P. L., Livi, R., Rahmati, A., Chen, C. H. K., Wilson, L. B., Alterman, B. L., & Wicks, R. T. (2022). Revolutionizing Our Understanding of Particle Energization in Space Plasmas Using On-Board Wave-Particle Correlator Instrumentation. Frontiers in Astronomy and Space Sciences, 9.
dc.identifier.issn2296-987X
dc.identifier.doi10.3389/fspas.2022.912868
dc.identifier.urihttp://hdl.handle.net/10150/665940
dc.description.abstractA leap forward in our understanding of particle energization in plasmas throughout the heliosphere is essential to answer longstanding questions in heliophysics, including the heating of the solar corona, acceleration of the solar wind, and energization of particles that lead to observable phenomena, such as the Earth’s aurora. The low densities and high temperatures of typical heliospheric environments lead to weakly collisional plasma conditions. Under these conditions, the energization of particles occurs primarily through collisionless interactions between the electromagnetic fields and the individual plasma particles with energies characteristic of a particular interaction. To understand how the plasma heating and particle acceleration impacts the macroscopic evolution of the heliosphere, impacting phenomena such as extreme space weather, it is critical to understand these collisionless wave-particle interactions on the characteristic ion and electron kinetic timescales. Such understanding requires high-cadence measurements of both the electromagnetic fields and the three-dimensional particle velocity distributions. Although existing instrument technology enables these measurements, a major challenge to maximize the scientific return from these measurements is the limited amount of data that can be transmitted to the ground due to telemetry constraints. A valuable, but underutilized, approach to overcome this limitation is to compute on-board correlations of the maximum-cadence field and particle measurements to improve the sampling time by several orders of magnitude. Here we review the fundamentals of the innovative field-particle correlation technique, present a formulation of the technique that can be implemented as an on-board wave-particle correlator, and estimate results that can be achieved with existing instrumental capabilities for particle velocity distribution measurements. Copyright © 2022 Howes, Verniero, Larson, Bale, Kasper, Goetz, Klein, Whittlesey, Livi, Rahmati, Chen, Wilson, Alterman and Wicks.
dc.language.isoen
dc.publisherFrontiers Media S.A.
dc.rightsCopyright © 2022 Howes, Verniero, Larson, Bale, Kasper, Goetz, Klein, Whittlesey, Livi, Rahmati, Chen, Wilson, Alterman and Wicks. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectcollisionless shocks
dc.subjectkinetic instabilities
dc.subjectmagnetic reconnection
dc.subjectparticle acceleration
dc.subjectplasma heating
dc.subjectplasma turbulence
dc.subjectwave-particle correlator
dc.titleRevolutionizing Our Understanding of Particle Energization in Space Plasmas Using On-Board Wave-Particle Correlator Instrumentation
dc.typeArticle
dc.typetext
dc.contributor.departmentLunar and Planetary Laboratory, University of Arizona
dc.contributor.departmentDepartment of Planetary Sciences, University of Arizona
dc.identifier.journalFrontiers in Astronomy and Space Sciences
dc.description.noteOpen access journal
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
dc.eprint.versionFinal published version
dc.source.journaltitleFrontiers in Astronomy and Space Sciences
refterms.dateFOA2022-08-25T00:52:07Z


Files in this item

Thumbnail
Name:
fspas-09-912868.pdf
Size:
2.105Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record

Copyright © 2022 Howes, Verniero, Larson, Bale, Kasper, Goetz, Klein, Whittlesey, Livi, Rahmati, Chen, Wilson, Alterman and Wicks. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).
Except where otherwise noted, this item's license is described as Copyright © 2022 Howes, Verniero, Larson, Bale, Kasper, Goetz, Klein, Whittlesey, Livi, Rahmati, Chen, Wilson, Alterman and Wicks. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).