Show simple item record

dc.contributor.authorLIGO Scientific Collaboration
dc.contributor.authorVirgo Collaboration
dc.contributor.authorKAGRA Collaboration
dc.date.accessioned2022-08-25T00:52:21Z
dc.date.available2022-08-25T00:52:21Z
dc.date.issued2022
dc.identifier.citationAbbott, R., Abe, H., Acernese, F., Ackley, K., Adhikari, N., Adhikari, R. X., Adkins, V. K., Adya, V. B., Affeldt, C., Agarwal, D., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O. D., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., … the KAGRA Collaboration. (2022). First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022(6).
dc.identifier.issn2050-3911
dc.identifier.doi10.1093/ptep/ptac073
dc.identifier.urihttp://hdl.handle.net/10150/665963
dc.description.abstractWe report the results of the first joint observation of the KAGRA detector with GEO 600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with 3 km arms, located in Kamioka, Gifu, Japan. GEO 600 is a British-German laser interferometer with 600 m arms, located near Hannover, Germany. GEO 600 and KAGRA performed a joint observing run from April 7 to 20, 2020. We present the results of the joint analysis of the GEO-KAGRA data for transient gravitational-wave signals, including the coalescence of neutron-star binaries and generic unmodeled transients. We also perform dedicated searches for binary coalescence signals and generic transients associated with gamma-ray burst events observed during the joint run. No gravitational-wave events were identified. We evaluate the minimum detectable amplitude for various types of transient signals and the spacetime volume for which the network is sensitive to binary neutron-star coalescences. We also place lower limits on the distances to the gamma-ray bursts analyzed based on the non-detection of an associated gravitational-wave signal for several signal models, including binary coalescences. These analyses demonstrate the feasibility and utility of KAGRA as a member of the global gravitational-wave detector network. © The Author(s) 2022.
dc.language.isoen
dc.publisherPhysical Society of Japan
dc.rightsCopyright © The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/).
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleFirst joint observation by the underground gravitational-wave detector KAGRA with GEO 600
dc.typeArticle
dc.typetext
dc.contributor.departmentUniversity of Arizona
dc.identifier.journalProgress of Theoretical and Experimental Physics
dc.description.noteOpen access journal
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
dc.eprint.versionFinal published version
dc.source.journaltitleProgress of Theoretical and Experimental Physics
refterms.dateFOA2022-08-25T00:52:21Z


Files in this item

Thumbnail
Name:
ptac073.pdf
Size:
18.41Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record

Copyright © The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as Copyright © The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/).