• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Numerical Investigations of Receptivity, Stability and Transition for High-Speed Boundary Layers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_20013_sip1_m.pdf
    Size:
    93.21Mb
    Format:
    PDF
    Download
    Author
    Haas, Anthony Paul
    Issue Date
    2022
    Advisor
    Fasel, Hermann F.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Numerical tools for receptivity and stability investigations in high-speed boundary layers were developed: A local Linear Stability Theory (LST) solver applicable for axisymmetric geometries as well as linear and nonlinear disturbance flow formulation solvers suitable for complex geometries. Explicit, implicit and time-spectral time-integration schemes were considered. Although explicit methods are comparatively simpler to implement for disturbance flow formulation solvers, the allowable time-step for stability reasons can be much smaller than that required by accuracy considerations. This is especially the case for receptivity problems involving sharp nose geometries, such as cones or wedges, because the resolution requirements in the nose region can lead to severe restrictions of the time-step for explicit schemes. The new solvers were verified and validated for a variety of flow conditions, geometries, and instabilities. Three investigations are presented. First, the effects of (small) leading edge bluntness on the linear stability of flat-plate boundary layers was investigated. For the conditions investigated, it was found that very small nose radii had already a significant effect on the stability characteristics. Second, the receptivity of a Mach 10 boundary layer on a 7 degree half-angle cone to freestream acoustic disturbances was considered. A detailed analysis as well as comparisons with LST are provided. For the case considered, slow acoustic waves converted rather naturally into the unstable mode S, while fast acoustic waves followed the trend of mode F until a specific downstream location where a switch occurred. Finally, linear and nonlinear cross-flow instability computations are presented for an infinite span swept wing with biconvex airfoil at Mach 2. The stability characteristics as well as flow structures associated with the linear, secondary instability and nonlinear regimes are presented and discussed.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Aerospace Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.