Von Zeipel - Lidov - Kozai cycles in action: Kepler triples with eclipse depth variations: KICs 6964043, 5653126, 5731312, and 8023317
Affiliation
University of Arizona, Steward ObservatoryIssue Date
2022Keywords
binaries: closebinaries: eclipsing
stars: individual: KIC 5653126
stars: individual: KIC 5731312
stars: individual: KIC 6964043
stars: individual: KIC 8023317
Metadata
Show full item recordPublisher
Oxford University PressCitation
Borkovits, T., Rappaport, S. A., Toonen, S., Moe, M., Mitnyan, T., & Csányi, I. (2022). Von Zeipel—Lidov—Kozai cycles in action: Kepler triples with eclipse depth variations: KICs 6964043, 5653126, 5731312, and 8023317. Monthly Notices of the Royal Astronomical Society, 515(3), 3773–3795.Rights
Copyright © 2022 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We report the results of the photodynamical analyses of four compact, tight triple stellar systems, KICs 6964043, 5653126, 5731312, and 8023317, based largely on Kepler and TESS data. All systems display remarkable eclipse timing and eclipse depth variations, the latter implying a non-aligned outer orbit. Moreover, KIC 6964043 is also a triply eclipsing system. We combined photometry, ETV curves, and archival spectral energy distribution data to obtain the astrophysical parameters of the constituent stars and the orbital elements with substantial precision. KICs 6964043 and 5653126 were found to be nearly flat with mutual inclinations imut = 4${_{.}^{\circ}}$1 and 12${_{.}^{\circ}}$3, respectively, while KICs 5731312 and 8023317 (imut = 39${_{.}^{\circ}}$4 and 55${_{.}^{\circ}}$7, respectively) are found to lie in the high imut regime of the von Zeipel-Kozai-Lidov (ZKL) theorem. We show that, currently, both high inclination triples exhibit observable unusual retrograde apsidal motion. Moreover, the eclipses will disappear in all but one of the four systems within a few decades. Short-term numerical integrations of the dynamical evolution reveal that both high inclination triples are currently subject to ongoing, large amplitude (Δe ∼0.3) inner eccentricity variations on centuries-long time-scales, in accord with the ZKL theorem. Longer-term integrations predict that two of the four systems may become dynamically unstable on ∼Gyr time-scales, while in the other two triples common envelope phases and stellar mergers may occur. Finally, we investigate the dynamical properties of a sample of 71 KIC/TIC triples statistically, and find that the mutual inclinations and outer mass ratios are anticorrelated at the 4σ level. We discuss the implications for the formation mechanisms of compact triples. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.Note
Immediate accessISSN
0035-8711Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1093/mnras/stac1983