Show simple item record

dc.contributor.authorRudenko, Anton
dc.contributor.authorHagen, Maria K.
dc.contributor.authorHader, Jörg
dc.contributor.authorKoch, Stephan W.
dc.contributor.authorMoloney, Jerome V.
dc.date.accessioned2022-10-13T23:04:00Z
dc.date.available2022-10-13T23:04:00Z
dc.date.issued2022-07-06
dc.identifier.citationA. Rudenko, M. K. Hagen, J. Hader, S. W. Koch, and J. V. Moloney, "Self-consistent Maxwell–Bloch model for highorder harmonic generation in nanostructured semiconductors", Photon. Res. 10 (9), 2099 (2022).en_US
dc.identifier.issn2327-9125
dc.identifier.doi10.1364/PRJ.463258
dc.identifier.urihttp://hdl.handle.net/10150/666397
dc.description.abstractIn pursuit of efficient high-order harmonic conversion in semiconductor devices, modeling insights into the complex interplay among ultrafast microscopic electron–hole dynamics, nonlinear pulse propagation, and field confinement in nanostructured materials are urgently needed. Here, a self-consistent approach coupling semiconductor Bloch and Maxwell equations is applied to compute transmission and reflection high-order harmonic spectra for finite slab and sub-wavelength nanoparticle geometries. An increase in the generated high harmonics by several orders of magnitude is predicted for gallium arsenide nanoparticles with a size maximizing the magnetic dipole resonance. Serving as a conceptual and predictive tool for ultrafast spatiotemporal nonlinear optical responses of nanostructures with arbitrary geometry, our approach is anticipated to deliver new strategies for optimal harmonic manipulation in semiconductor metadevices.en_US
dc.description.sponsorshipAir Force Office of Scientific Researchen_US
dc.language.isoenen_US
dc.publisherChinese Laser Pressen_US
dc.rights© 2022 Chinese Laser Press.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en_US
dc.titleSelf-consistent Maxwell–Bloch model for highorder harmonic generation in nanostructured semiconductorsen_US
dc.typeArticleen_US
dc.contributor.departmentArizona Center for Mathematical Sciences, University of Arizonaen_US
dc.contributor.departmentWyant College of Optical Sciences, University of Arizonaen_US
dc.identifier.journalPhotonics Researchen_US
dc.description.note12 month embargo; published: 19 August 2022en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal accepted manuscripten_US


Files in this item

Thumbnail
Name:
PhotonicsResearch_AcceptedManu ...
Size:
1.550Mb
Format:
PDF
Description:
Final Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record