Laser-induced dynamic alignment of the HD molecule without the Born-Oppenheimer approximation
Name:
5.0101352.pdf
Embargo:
2023-10-10
Size:
7.181Mb
Format:
PDF
Description:
Final Published Version
Affiliation
Department of Chemistry and Biochemistry, University of ArizonaIssue Date
2022
Metadata
Show full item recordPublisher
American Institute of Physics Inc.Citation
Adamowicz, L., Kvaal, S., Lasser, C., & Pedersen, T. B. (2022). Laser-induced dynamic alignment of the HD molecule without the Born-Oppenheimer approximation. Journal of Chemical Physics, 157(14).Journal
Journal of Chemical PhysicsRights
Copyright © 2022 Author(s). Published under an exclusive license by AIP Publishing.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Laser-induced molecular alignment is well understood within the framework of the Born-Oppenheimer (BO) approximation. Without the BO approximation, however, the concept of molecular structure is lost, making it hard to precisely define alignment. In this work, we demonstrate the emergence of alignment from the first-ever non-BO quantum dynamics simulations, using the HD molecule exposed to ultrashort laser pulses as a few-body test case. We extract the degree of alignment from the non-BO wave function by means of an operator expressed in terms of pseudo-proton coordinates that mimics the BO-based definition of alignment. The only essential approximation, in addition to the semiclassical electric-dipole approximation for the matter-field interaction, is the choice of time-independent explicitly correlated Gaussian basis functions. We use a variational, electric-field-dependent basis-set construction procedure, which allows us to keep the basis-set dimension low while capturing the main effects of electric polarization on the nuclear and electronic degrees of freedom. The basis-set construction procedure is validated by comparing with virtually exact grid-based simulations for two one-dimensional model systems: laser-driven electron dynamics in a soft attractive Coulomb potential and nuclear rovibrational dynamics in a Morse potential. © 2022 Author(s).Note
12 month embargo; published online: 10 October 2022ISSN
0021-9606PubMed ID
36243530Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1063/5.0101352
Scopus Count
Collections
Related articles
- Electric transition dipole moment in pre-Born-Oppenheimer molecular structure theory.
- Authors: Simmen B, Mátyus E, Reiher M
- Issue date: 2014 Oct 21
- Coupled Electron-Nuclear Dynamics on H(2)(+) within Time-Dependent Born-Oppenheimer Approximation.
- Authors: Dey D, Tiwari AK
- Issue date: 2016 Oct 27
- Quantum flux densities for electronic-nuclear motion: exact versus Born-Oppenheimer dynamics.
- Authors: Schaupp T, Engel V
- Issue date: 2022 May 16
- On the validity range of the Born-Oppenheimer approximation: a semiclassical study for all-particle quantization of three-body Coulomb systems.
- Authors: Takahashi S, Takatsuka K
- Issue date: 2006 Apr 14
- Darwin and mass-velocity relativistic corrections in non-Born-Oppenheimer variational calculations.
- Authors: Kedziera D, Stanke M, Bubin S, Barysz M, Adamowicz L
- Issue date: 2006 Aug 28