Show simple item record

dc.contributor.authorCristea, N.C.
dc.contributor.authorBennett, A.
dc.contributor.authorNijssen, B.
dc.contributor.authorLundquist, J.D.
dc.date.accessioned2022-11-23T18:21:19Z
dc.date.available2022-11-23T18:21:19Z
dc.date.issued2022
dc.identifier.citationCristea, N. C., Bennett, A., Nijssen, B., & Lundquist, J. D. (2022). When and Where Are Multiple Snow Layers Important for Simulations of Snow Accumulation and Melt? Water Resources Research, 58(10).
dc.identifier.issn0043-1397
dc.identifier.doi10.1029/2020WR028993
dc.identifier.urihttp://hdl.handle.net/10150/666908
dc.description.abstractMany watershed-scale and land surface models incorporate snowmelt modules with simplified representations of the snowpack with three or fewer layers. These modeling choices were traditionally made to reduce model complexity and computational demand while still being able to simulate large model domains. However, these simple snow layering schemes may not always simulate snow processes and the effects of climate change across a range of climatic and geographic conditions. Here we evaluate simple snow layering schemes (having two to five layers, commonly found in watershed-scale and land surface models) against a synthetic benchmark with up to 100 layers at three locations with different climate conditions using the SUMMA modeling framework. We evaluate 10 different layering configurations of two to five layers with variable thicknesses and show that the effect of the layering scheme varies with site conditions. We find that the layer configuration is more important at a cold high elevation site in the Sierra Nevada, California (∼1.4°C annual average temperature), and at a warm site in the French Alps (∼6.5°C), and less important at a site in Idaho (∼5.0°C). The top layer thickness of the simpler snow layering configurations also influences the simulated snow surface and snowpack temperatures and timing of snowmelt. Our tests showed that the five-layer model with thin layers near the surface was closest to the benchmark (median NSE = 0.99), and therefore we recommend using multiple snow layers for reliable simulations of snow accumulation and melt across a range of climates. © 2022. American Geophysical Union. All Rights Reserved.
dc.language.isoen
dc.publisherJohn Wiley and Sons Inc
dc.rightsCopyright © 2022. American Geophysical Union. All Rights Reserved.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectclimate change
dc.subjectmodeling
dc.subjectsnow
dc.subjectsnow layers
dc.subjectsnow models
dc.subjectSUMMA
dc.titleWhen and Where Are Multiple Snow Layers Important for Simulations of Snow Accumulation and Melt?
dc.typeArticle
dc.typetext
dc.contributor.departmentHydrology & Atmospheric Sciences, University of Arizona
dc.identifier.journalWater Resources Research
dc.description.note6 month embargo; first published: 23 September 2022
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
dc.eprint.versionFinal published version
dc.source.journaltitleWater Resources Research


Files in this item

Thumbnail
Name:
Water Resources Research - 2022 ...
Embargo:
2023-03-23
Size:
2.333Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record