Inferring Ecosystem Functioning in a Changing World through the Lens of Eco-Metabolomics
Publisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Embargo
Release after 11/10/2024Abstract
Understanding the controls on microbial functioning and community interactions under climate change-induced environmental disturbances is critical to deciphering the global carbon budget and greenhouse gas (GHG) fluxes. Currently, most climate projections rely on various scenarios and models to investigate how altered climate conditions influence the tradeoffs in microbial ecological traits as a function of GHG emissions. However, the complex interactions between biotic (microbially-mediated) and abiotic (environmentally-mediated) processes under climate change posit a challenge for accurate climate change prediction and the development of effective climate adaptation and mitigation plans.In this dissertation, I will describe the results of several experiments designed to understand the impact of environmental disturbances on biogeochemical processes and how they influence the ecosystem output (GHGs) through a combination of field and various experimental manipulations through the lens of integrated multi-omics and biogeochemical analyses. This work revealed that environmental disturbances such as temperature increase, oxygen availability, and nutrient imbalance could significantly influence microbial activity with direct implications for GHG emissions. The results of these studies will help better understand ecosystem responses to changes in environmental conditions and how these changes are translated into GHG emissions. Such in depth-analyses through the lens of multi-omics are necessary to unravel the biological complexity around us and for climate model improvement and enhancement of future climate predictions.Type
textElectronic Dissertation
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Graduate CollegeSoil, Water and Environmental Science