• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Novel Strategies for Improved Chronic Neurochemical Measurements In Vivo

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_20043_sip1_m.pdf
    Size:
    6.274Mb
    Format:
    PDF
    Download
    Author
    Seaton, Blake
    Issue Date
    2022
    Advisor
    Heien, Michael L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The work detailed in this dissertation investigates the challenges of chronic neurochemical measurements in vivo and expands the toolbox of the neuroanalytical chemist working to overcome those challenges. Following the introduction in Chapter 1, Chapter 2 investigates the effects that biofouling has on chronically implanted electrodes, specifically for long-term FSCV. The effects on impedance and reference electrode polarization are explored, and a three-electrode FSCV configuration is designed and employed to mitigate the effects on impedance. Chapter 3 describes the fabrication, characterization, and utilization of an iridium oxide (IrOx) reference electrode. The IrOx reference electrode is shown to perform as well as the conventional Ag/AgCl-wire reference electrode in vitro and in vivo, with the additional benefit of biocompatibility. IrOx has the capability to provide a stable reference potential for chronic FSCV in animals and eventually humans. Chapter 4 details the design and employment of an Ommaya-reservoir-based probe for chronic, minimally invasive collection of cerebrospinal fluid (CSF) from non-human primates (NHPs). The development and optimization of an ion-pair HPLC method with electrochemical detection for neurochemical analysis of the collected CSF is described. The use of this novel collection strategy to investigate the effects of vagus nerve stimulation on CSF neurotransmitter levels is explored. Additionally, the behavioral characteristics of NHPs during the completion of custom-written visual learning tasks involving social hierarchy are studied. Combination of these behavioral observations with CSF neurotransmitter analysis via Ommaya reservoir is feasible and would allow for novel insight into the relationships between neurotransmission, social hierarchy, and learning. Together, the work presented in this dissertation offers novel insights, tools, and strategies toward making accurate and meaningful neurochemical measurements in vivo and paves the way for further advancements in the field of chronic in vivo neurochemistry.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.