Show simple item record

dc.contributor.authorWang, Zhi
dc.contributor.authorTang, Xueying
dc.contributor.authorLiu, Jingchen
dc.contributor.authorYing, Zhiliang
dc.date.accessioned2022-12-08T01:18:40Z
dc.date.available2022-12-08T01:18:40Z
dc.date.issued2022-11
dc.identifier.citationWang, Z., Tang, X., Liu, J., & Ying, Z. (2022). Subtask analysis of process data through a predictive model. British Journal of Mathematical and Statistical Psychology.en_US
dc.identifier.issn0007-1102
dc.identifier.doi10.1111/bmsp.12290
dc.identifier.urihttp://hdl.handle.net/10150/667134
dc.description.abstractResponse process data collected from human–computer interactive items contain detailed information about respondents' behavioural patterns and cognitive processes. Such data are valuable sources for analysing respondents' problem-solving strategies. However, the irregular data format and the complex structure make standard statistical tools difficult to apply. This article develops a computationally efficient method for exploratory analysis of such process data. The new approach segments a lengthy individual process into a sequence of short subprocesses to achieve complexity reduction, easy clustering and meaningful interpretation. Each subprocess is considered a subtask. The segmentation is based on sequential action predictability using a parsimonious predictive model combined with the Shannon entropy. Simulation studies are conducted to assess the performance of the new method. We use a case study of PIAAC 2012 to demonstrate how exploratory analysis for process data can be carried out with the new approach.en_US
dc.description.sponsorshipNational Science Foundation of Sri Lankaen_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.rights© 2022 British Psychological Society.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en_US
dc.subjectaction predictionen_US
dc.subjectentropyen_US
dc.subjectprocess dataen_US
dc.subjectsequence segmentationen_US
dc.titleSubtask analysis of process data through a predictive modelen_US
dc.typeArticleen_US
dc.identifier.eissn2044-8317
dc.contributor.departmentDepartment of Mathematics, University of Arizonaen_US
dc.identifier.journalBritish Journal of Mathematical and Statistical Psychologyen_US
dc.description.note12 month embargo; first published: 01 November 2022en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal accepted manuscripten_US
dc.identifier.pii10.1111/bmsp.12290
dc.source.journaltitleBritish Journal of Mathematical and Statistical Psychology


Files in this item

Thumbnail
Name:
draft_R2.pdf
Size:
1.497Mb
Format:
PDF
Description:
Final Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record