• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Large Scale Enrichment and Statistical Cyber Characterization of Network Traffic

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    2022298602.pdf
    Size:
    1.320Mb
    Format:
    PDF
    Description:
    Final Accepted Manuscript
    Download
    Author
    Kawaminami, Ivan
    Estrada, Arminda
    Elsakkary, Youssef
    Jananthan, Hayden
    Buluc, Aydin
    Davis, Tim
    Grant, Daniel
    Jones, Michael
    Meiners, Chad
    Morris, Andrew
    Pisharody, Sandeep
    Kepner, Jeremy
    Show allShow less
    Affiliation
    University of Arizona
    Issue Date
    2022-09-19
    Keywords
    Big Data
    Cybersecurity
    Dimensional Analysis
    High Performing Computing
    Internet Modeling
    Networks Scanning
    Packet Capture
    Streaming Graphs
    Ciberseguridad
    Computación de alto rendimiento
    Big Data
    Escaneo de redes
    Análisis dimensional
    Modelado de Internet
    Captura de paquetes
    Gráficos de transmisión
    Show allShow less
    
    Metadata
    Show full item record
    Publisher
    IEEE
    Citation
    Kawaminami, I., Estrada, A., Elsakkary, Y., Jananthan, H., Buluc, A., Davis, T., Grant, D., Jones, M., Meiners, C., Morris, A., Pisharody, S., & Kepner, J. (2022). Large Scale Enrichment and Statistical Cyber Characterization of Network Traffic. 2022 IEEE High Performance Extreme Computing Conference, HPEC 2022.
    Journal
    2022 IEEE High Performance Extreme Computing Conference, HPEC 2022
    Rights
    ©2022 IEEE.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Modern network sensors continuously produce enormous quantities of raw data that are beyond the capacity of human analysts. Cross-correlation of network sensors increases this challenge by enriching every network event with additional metadata. These large volumes of enriched network data present opportunities to statistically characterize network traffic and quickly answer a key question: 'What are the primary cyber characteristics of my network data?' The Python GraphBLAS and PyD4M analysis frameworks enable anonymized statistical analysis to be performed quickly and efficiently on very large network data sets. This approach is tested using billions of anonymized network data samples from the largest Internet observatory (CAIDA Telescope) and tens of millions of anonymized records from the largest commercially available background enrichment capability (GreyNoise). The analysis confirms that most of the enriched variables follow expected heavy-tail distributions and that a large fraction of the network traffic is due to a small number of cyber activities. This information can simplify the cyber analysts' task by enabling prioritization of cyber activities based on statistical prevalence. Los sensores de red modernos producen enormes cantidades de datos sin procesar que están más allá de la capacidad del análisis humano. Una correlación cruzada de sensores de red se convierte en un desafío al enriquecer cada evento de red con metadatos adicionales. Estos grandes volúmenes de datos de red enriquecidos presentan una oportunidad para caracterizar estadísticamente el tráfico de red y responder a la pregunta: "¿Cuáles son las principales características cibernéticas de mis datos de red?" Los esquemas de análisis de Python GraphBLAS y D4M permiten realizar análisis estadísticos anónimos, rápidos y eficientes en conjuntos grandes de datos de red. Este enfoque se prueba utilizando miles de millones de muestras de datos de red anónimos del observatorio de Internet más grande (Telescopio CAIDA) y decenas de millones de registros anónimos del fondo comercial con la mayor capacidad de enriquecimiento (GreyNoise). El análisis confirma que la mayoría de las variables enriquecidas siguen las distribuciones de cola pesada y que una gran fracción del tráfico de red se debe a una pequeña cantidad de actividades cibernéticas. Esta información puede simplificar la tarea de los analistas cibernéticos al permitir la priorización de las actividades cibernéticas en función de la prevalencia estadística.
    Note
    Immediate access
    DOI
    10.1109/hpec55821.2022.9926397
    Version
    Final accepted manuscript
    Sponsors
    National Science Foundation
    ae974a485f413a2113503eed53cd6c53
    10.1109/hpec55821.2022.9926397
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.