Affiliation
Steward Observatory, University of ArizonaIssue Date
2022
Metadata
Show full item recordPublisher
SPIECitation
Termini, J. A. B., Hoadley, K., DeRoo, C., Fasano, C., Hamden, E., & Li, J. (2022). Determining ideal grating parameters for UV blazed gratings. Proceedings of SPIE - The International Society for Optical Engineering, 12181.Rights
Copyright © 2022 SPIE.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Ultraviolet (UV, 900−2000 Å) spectroscopy simultaneously traces the most common elements (e.g., H, He, O, C, N) in many phases, in the form of ionic, atomic, and molecular lines. UV grating spectrometers hence offer unique insights into astrophysical systems and the impacts of their evolution. This work seeks to understand how we might best optimize certain grating designs for targeted astrophysical tracers. Our work is intended to guide proposers in determining the ideal grating parameters given their specific science objectives. We report on the results of the initial phase of the project, a thorough design phase to determine the ideal grating parameters and electron-beam lithography/potassium hydroxide patterning prescriptions for blazed UV gratings. We use grating simulation software to explore a grating-parameter space and determine the key performance expectations for gratings in next-generation UV space instruments. We present our results for a rough grid in grating-parameter space (blaze angle: ∼30°−76°, grating period: 100−5000 nm). Future work will explore specific cases that include the nominal grating prescriptions for current (e.g., Hyperion, PolStar, LUVOIR) and future mission designs. © 2022 SPIE. All rights reserved.Note
Immediate accessISSN
0277-786XISBN
9781510653436Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1117/12.2628739