• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Adjustable height glass spacers for bonding and aligning X-ray mirror stacks

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    121814Y.pdf
    Size:
    1.093Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Chalifoux, B.D.
    Arnold, I.J.
    Affiliation
    Wyant College of Optical Sciences, University of Arizona
    Issue Date
    2022
    Keywords
    optical alignment
    optical assembly
    strain
    ultrashort pulsed laser
    X-ray astronomical optics
    
    Metadata
    Show full item record
    Publisher
    SPIE
    Citation
    Chalifoux, B. D., & Arnold, I. J. (2022). Adjustable height glass spacers for bonding and aligning X-ray mirror stacks. Proceedings of SPIE - The International Society for Optical Engineering, 12181.
    Journal
    Proceedings of SPIE - The International Society for Optical Engineering
    Rights
    Copyright © 2022 SPIE.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Future sub-arcsecond resolution, large-effective area X-ray telescopes that use segmented grazing-incidence mirrors will require a bonding and alignment method that simultaneously: 1) achieves the accuracy needed for scientific observations, 2) possesses the strength needed to survive the ride to space, and 3) has high throughput to bond and align tens of thousands of components in a couple years. Current bonding and alignment processes are either over-constrained to achieve high strength with modest accuracy, or quasi-kinematic to achieve high accuracy but with lower strength. We propose an over-constrained mounting approach where spacers separating mirrors have set-and-forget adjustable height. This approach may provide the advantages of high strength and high accuracy simultaneously, while loosening initial assembly tolerances to improve process throughput. In our proposed process, glass spacers are fabricated with μm-accuracy using ultrashort pulsed laser-assisted chemical etching and Bessel beam optics. Their length is adjusted after assembly and bonding, using the same laser and optics. We show examples of our fabricated spacers assembled into stacks of mirrors and bonded using epoxy with spacer beads. In a separate experiment, we show that the length of spacers can be quickly and stably adjusted with μm-range and with nm-resolution as required for aligning X-ray mirrors. This bonding and alignment process may help solve a longstanding and critical challenge for future sub-arcsecond resolution large-effective area X-ray telescopes. © 2022 SPIE. All rights reserved.
    Note
    Immediate access
    ISSN
    0277-786X
    ISBN
    9781510653436
    DOI
    10.1117/12.2630517
    Version
    Final published version
    ae974a485f413a2113503eed53cd6c53
    10.1117/12.2630517
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.