• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Extracting dark-matter velocities from halo masses: A reconstruction conjecture

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    PhysRevD.106.083506.pdf
    Size:
    1.674Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Dienes, K.R.
    Huang, F.
    Kost, J.
    Manogue, K.
    Thomas, B.
    Affiliation
    Department of Physics, University of Arizona
    Issue Date
    2022
    
    Metadata
    Show full item record
    Publisher
    American Physical Society
    Citation
    Dienes, K. R., Huang, F., Kost, J., Manogue, K., & Thomas, B. (2022). Extracting dark-matter velocities from halo masses: A reconstruction conjecture. Physical Review D, 106(8).
    Journal
    Physical Review D
    Rights
    Copyright © 2022 American Physical Society.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Increasing attention has recently focused on nontraditional dark-matter production mechanisms which result in primordial dark-matter velocity distributions with highly nonthermal shapes. In this paper, we undertake an assessment of how the detailed shape of a general dark-matter velocity distribution impacts structure formation in the nonlinear regime. In particular, we investigate the impact on the halo-mass and subhalo-mass functions, as well as on astrophysical observables such as satellite and cluster-number counts. We find that many of the standard expectations no longer hold in situations in which this velocity distribution takes a highly nontrivial, even multimodal shape. For example, we find that the nominal free-streaming scale alone becomes insufficient to characterize the effect of free-streaming on structure formation. In addition, we propose a simple one-line conjecture which can be used to "reconstruct"the primordial dark-matter velocity distribution directly from the shape of the halo-mass function. Although our conjecture is completely heuristic, we show that it successfully reproduces the salient features of the underlying dark-matter velocity distribution even for nontrivial distributions which are highly nonthermal and/or multimodal, such as might occur for nonminimal dark sectors. Moreover, since our approach relies only on the halo-mass function, our conjecture provides a method of probing dark-matter properties even for scenarios in which the dark and visible sectors interact only gravitationally. © 2022 American Physical Society. American Physical Society.
    Note
    Immediate access
    ISSN
    2470-0010
    DOI
    10.1103/PhysRevD.106.083506
    Version
    Final published version
    ae974a485f413a2113503eed53cd6c53
    10.1103/PhysRevD.106.083506
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.