• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Estimation of Diffractive Surface Profile using Phase Retrieval Techniques

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_20252_sip1_m.pdf
    Size:
    7.222Mb
    Format:
    PDF
    Download
    Author
    Ryu, Jieun
    Issue Date
    2023
    Keywords
    diffractive surface
    phase retrieval technique
    Advisor
    Schwiegerling, James T.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    An intraocular lens (IOL) is an artificial lens that is inserted into the eye as part of a treatment for cataract or myopia. Among the many types of IOLs, multifocal IOLs with diffractive optics design have been demonstrated to provide superior vision for both distance and near vision after surgery. In this dissertation, methods for estimating the diffractive surface profile of a multifocal diffractive IOL are investigated. Traditionally, several types of instruments have been proposed to determine the phase profile, such as conventional interferometers and Shack-Hartmann sensor. Holography-based setups have also been widely used for surface profile measurement. However, the proposed conventional methods require additional optical components or a reference beam, increasing system complexity and cost of the system. To avoid the limitations of the conventional system stated above, phase retrieval technique is implemented to estimate the diffractive surface profile of an IOL. The phase retrieval technique is the process of recovering the complex-valued function given the magnitude of its Fourier transform. It is natural to investigate the phase of an object, as optical imaging devices only measure the intensity of light and cannot measure the associated phase directly. This dissertation examines several phase retrieval algorithms. The multiplane phase retrieval algorithm described by Gerchberg is implemented for embodiment of the methods. To acquire multiple diffraction patterns, some techniques were used, such as displacing the imaging sensor to record intensities at different planes, modulating phase in Fourier domain using spatial light modulator (SLM) to record a sequence of intensities with different image planes, and modulating phase in pupil plane using SLM to record diffraction patterns at an image plane with phase diversity. Employing the considered phase retrieval schemes, the phase profile of diffractive multifocal intraocular lens was estimated. This dissertation begins with background section, which describes the human eye and basic principles of multifocal intraocular lenses. Chapter 1 covers basic optical structure of the human eye, age-related eye conditions, and fundamentals of intraocular lenses. Chapter 2 motives and describes several basic phase retrieval algorithms and limitations in finding the phase profile of the diffractive surface of an intraocular lens, followed by computational simulations. Chapter 3 deals with phase retrieval technique employed in combination with the multi-plane phase retrieval method, as well as the selected SLM-based phase retrieval technique suitable for finding phase profile of the diffractive intraocular lens. Chapter 4 describes the experimental setup employed for validating the phase retrieval technique to measure the wavefront profile of the intraocular lenses. The calibration procedure implemented in the experiment is discussed. Chapter 5 concludes the dissertation.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.