Autonomous closed-loop control for multi-segmented optic aligning and assembly
Affiliation
Wyant College of Optical Sciences, University of ArizonaLarge Binocular Telescope Observatory, University of Arizona
Department of Astronomy, University of Arizona
Lunar and Planetary Laboratory, University of Arizona
Issue Date
2022
Metadata
Show full item recordPublisher
SPIECitation
Choi, H., Esparza, M. A., Luu, R., Milster, T., Apai, D., & Kim, D. (2022). Autonomous closed-loop control for multi-segmented optic aligning and assembly. Proceedings of SPIE - The International Society for Optical Engineering, 12221.Rights
Copyright © 2022 SPIE.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
To meet the scientific requirements demanded for futuristic space exploration, the Nautilus space mission has adopted the newly developed multi-order diffractive optical elements (MODE) design. Primary optics with large aperture diameters, like those used commonly in observatories, are frequently the design most employed and demanded by astronomers. However, this is limited by the difficult challenges that comes with fabrication, alignment, and launch of said optics. The proposed primary optics fabrication breaks through these challenges by using molded segments as its primary optics. With the main advantage of requiring a relatively simplified assembly process and having a compressed volume, the compact form factor will allow for multiple telescope units to be sent together in a single launch. Additionally, the molding and segmented manufacturing creates a fine structure on the diffractive lens surface that is not easy to obtain via traditional surface removal fabrication processes for an identical optical surface piece. The feasibility of this assembly in respect to its accuracy and labor are the key factors of this approach. Therefore, we developed an in-Progress Metrology Control (iPMC) technique that was combined with a motorized mounting system to give us full autonomous closed-loop control during the UV curing of multiple segments. The iPMC monitors and guides the aligning of the adhesion process of the multi-segment MODE, while the metrology system measures the position of the multi-segments so that an individual actuator can automatically adjust the segment’s orientation during the UV curing process. This is happening simultaneously as the influence matrix of each actuator receives feedback from the metrology system. The validity of the iPMC is then checked using the mock-up MODE lens assembly. © 2022 SPIE.Note
Immediate accessISSN
0277-786XISBN
9781510654266Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1117/12.2633760