Measurement report: Closure analysis of aerosol-cloud composition in tropical maritime warm convection
Author
Crosbie, E.Ziemba, L.D.
Shook, M.A.
Robinson, C.E.
Winstead, E.L.
Thornhill, K.L.
Braun, R.A.
MacDonald, A.B.
Stahl, C.
Sorooshian, A.
Van Den Heever, S.C.
Digangi, J.P.
Diskin, G.S.
Woods, S.
Bañaga, P.
Brown, M.D.
Gallo, F.
Hilario, M.R.A.
Jordan, C.E.
Leung, G.R.
Moore, R.H.
Sanchez, K.J.
Shingler, T.J.
Wiggins, E.B.
Affiliation
Department of Chemical and Environmental Engineering, University of ArizonaDepartment of Hydrology and Atmospheric Sciences, University of Arizona
Issue Date
2022
Metadata
Show full item recordPublisher
Copernicus PublicationsCitation
Crosbie, E., Ziemba, L. D., Shook, M. A., Robinson, C. E., Winstead, E. L., Thornhill, K. L., Braun, R. A., MacDonald, A. B., Stahl, C., Sorooshian, A., Van Den Heever, S. C., Digangi, J. P., Diskin, G. S., Woods, S., Bañaga, P., Brown, M. D., Gallo, F., Hilario, M. R. A., Jordan, C. E., … Wiggins, E. B. (2022). Measurement report: Closure analysis of aerosol-cloud composition in tropical maritime warm convection. Atmospheric Chemistry and Physics, 22(20), 13269–13302.Rights
Copyright © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Cloud droplet chemical composition is a key observable property that can aid understanding of how aerosols and clouds interact. As part of the Clouds, Aerosols and Monsoon Processes - Philippines Experiment (CAMP2Ex), three case studies were analyzed involving collocated airborne sampling of relevant clear and cloudy air masses associated with maritime warm convection. Two of the cases represented a polluted marine background, with signatures of transported East Asian regional pollution, aged over water for several days, while the third case comprised a major smoke transport event from Kalimantan fires. Sea salt was a dominant component of cloud droplet composition, in spite of fine particulate enhancement from regional anthropogenic sources. Furthermore, the proportion of sea salt was enhanced relative to sulfate in rainwater and may indicate both a propensity for sea salt to aid warm rain production and an increased collection efficiency of large sea salt particles by rain in subsaturated environments. Amongst cases, as precipitation became more significant, so too did the variability in the sea salt to (non-sea salt) sulfate ratio. Across cases, nitrate and ammonium were fractionally greater in cloud water than fine-mode aerosol particles; however, a strong covariability in cloud water nitrate and sea salt was suggestive of prior uptake of nitrate on large salt particles. A mass-based closure analysis of non-sea salt sulfate compared the cloud water air-equivalent mass concentration to the concentration of aerosol particles serving as cloud condensation nuclei for droplet activation. While sulfate found in cloud was generally constrained by the sub-cloud aerosol concentration, there was significant intra-cloud variability that was attributed to entrainment - causing evaporation of sulfate-containing droplets - and losses due to precipitation. In addition, precipitation tended to promote mesoscale variability in the sub-cloud aerosol through a combination of removal, convective downdrafts, and dynamically driven convergence. Physical mechanisms exerted such strong control over the cloud water compositional budget that it was not possible to isolate any signature of chemical production/loss using in-cloud observations. The cloud-free environment surrounding the non-precipitating smoke case indicated sulfate enhancement compared to convective mixing quantified by a stable gas tracer; however, this was not observed in the cloud water (either through use of ratios or the mass closure), perhaps implying that the warm convective cloud timescale was too short for chemical production to be a leading-order budgetary term and because precursors had already been predominantly exhausted. Closure of other species was truncated by incomplete characterization of coarse aerosol (e.g., it was found that only 10 %-50 % of sea salt mass found in cloud was captured during clear-air sampling) and unmeasured gas-phase abundances affecting closure of semi-volatile aerosol species (e.g., ammonium, nitrate and organic) and soluble volatile organic compound contributions to total organic carbon in cloud water. © Copyright:Note
Open access journalISSN
1680-7316Version
Final published versionae974a485f413a2113503eed53cd6c53
10.5194/acp-22-13269-2022
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.