An Evaluation of Electrostatic Lofting and Subsequent Particle Motion on Bennu
Name:
Hartzell_2022_Planet._Sci._J._ ...
Size:
1.791Mb
Format:
PDF
Description:
Final Published Version
Affiliation
Lunar and Planetary Laboratory, University of ArizonaIssue Date
2022
Metadata
Show full item recordPublisher
Institute of PhysicsCitation
Hartzell, C., Zimmerman, M., & Hergenrother, C. (2022). An Evaluation of Electrostatic Lofting and Subsequent Particle Motion on Bennu. Planetary Science Journal, 3(4).Journal
Planetary Science JournalRights
Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Electrostatic lofting is the detachment of particles from a surface that occurs if the electrostatic force on the particles is greater than the forces binding the particles to the surface. Electrostatic lofting has been hypothesized to occur on the Moon and observed in the laboratory environment. Because gravity is much weaker on asteroids than on the Moon, the hypothesis of electrostatic lofting has naturally been extended to these smaller airless bodies. We evaluate the feasibility of electrostatic lofting on Bennu using two formulations of the patched charge model. We find that submillimeter particles can be lofted from Bennu’s dayside and, depending on their initial conditions, will reimpact or escape. The size and speed of the predicted electrostatically lofted particles are compared to those of the particle ejection events recently observed on Bennu. We find that dayside electrostatic lofting is not consistent with the size and speed of particles in the largest ejection events observed by the OSIRIS-REx mission. However, the escape of submillimeter particles has implications for the particle size distribution on Bennu’s surface. Additionally, we model particle charging on Bennu’s nightside due to secondary electron emission and find the resulting electrostatic force to be too weak to produce electrostatic lofting on the nightside. © 2022. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
2632-3338Version
Final published versionae974a485f413a2113503eed53cd6c53
10.3847/PSJ/ac5629
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.