Non-reciprocal acoustoelectric microwave amplifiers with net gain and low noise in continuous operation
Name:
s41928-022-00908-6.pdf
Size:
2.415Mb
Format:
PDF
Description:
Final Published Version
Author
Hackett, LisaMiller, Michael
Weatherred, Scott
Arterburn, Shawn
Storey, Matthew J.
Peake, Greg
Dominguez, Daniel
Finnegan, Patrick S.
Friedmann, Thomas A.
Eichenfield, Matt
Affiliation
College of Optical Sciences, University of ArizonaIssue Date
2023-01-16
Metadata
Show full item recordPublisher
Springer Science and Business Media LLCCitation
Hackett, L., Miller, M., Weatherred, S., Arterburn, S., Storey, M. J., Peake, G., Dominguez, D., Finnegan, P. S., Friedmann, T. A., & Eichenfield, M. (2023). Non-reciprocal acoustoelectric microwave amplifiers with net gain and low noise in continuous operation. Nature Electronics.Journal
Nature ElectronicsRights
© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Piezoelectric acoustic devices that are integrated with semiconductors can leverage the acoustoelectric effect, allowing functionalities such as gain and isolation to be achieved in the acoustic domain. This could lead to performance improvements and miniaturization of radio-frequency electronic systems. However, acoustoelectric amplifiers that offer a large acoustic gain with low power consumption and noise figure at microwave frequencies in continuous operation have not yet been developed. Here we report non-reciprocal acoustoelectric amplifiers that are based on a three-layer heterostructure consisting of an indium gallium arsenide (In0.53Ga0.47As) semiconducting film, a lithium niobate (LiNbO3) piezoelectric film, and a silicon substrate. The heterostructure can continuously generate 28.0 dB of acoustic gain (4.0 dB net radio-frequency gain) for 1 GHz phonons with an acoustic noise figure of 2.8 dB, while dissipating 40.5 mW of d.c. power. We also create a device with an acoustic gain of 37.0 dB (11.3 dB net gain) at 1 GHz with 19.6 mW of d.c. power dissipation and a non-reciprocal transmission of over 55 dB.Note
Open access articleEISSN
2520-1131Version
Final published versionSponsors
DOE | LDRD | Sandia National Laboratoriesae974a485f413a2113503eed53cd6c53
10.1038/s41928-022-00908-6
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License.