• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Modeled Demonstration of Hydromechanical Coupling in an Active Open Pit Mine

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_20880_sip1_m.pdf
    Size:
    4.195Mb
    Format:
    PDF
    Download
    Author
    Noonan, Gillian Erin
    Issue Date
    2023
    Keywords
    FLAC
    hydrogeology
    hydromechanical coupling
    mining
    numerical modeling
    slope stability
    Advisor
    Ferré, P.A. Ty
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Understanding the interaction of rock and water under stress is often a key factor in assessing slope stability in open-pit mining. Mining activity can increase or decrease the total stress acting on a rock mass, affecting the properties and behavior of the rock and water in the subsurface. In this research project, numerical modeling is used to demonstrate the concept of hydromechanical coupling based on an open-pit mining case study where coupled behavior due to slope excavation is observed in a piezometer monitoring sensor. The theory behind hydromechanical coupling and the physical parameters contributing to this behavior are discussed. Site monitoring data are analyzed, and their behavior are reproduced using the 2D numerical modeling software FLAC and a simplified coupled modeling process to produce mechanical- and flow-induced changes to a starting model developed based on the mine site conditions and mining activity. The work then assesses the sensitivity of contributing material parameters to modeled pore pressure responses and examines the range of important parameter values. This research aims to promote the understanding of hydrologic monitoring data behavior in pit slopes by producing a modeled hydromechanical explanation to provide improved knowledge for mine practitioners to use when planning mining activity, monitoring programs, and slope design. This work helps hydrogeologists interpret piezometer data and therefore make better decisions and models.
    Type
    Electronic Thesis
    text
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Hydrology
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.