• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Precision Identification and Targeting of Rod Microglia in Diffuse Brain-Injured Cortex

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_20707_sip1_m.pdf
    Embargo:
    2025-08-04
    Size:
    5.806Mb
    Format:
    PDF
    Download
    Author
    Giordano, Katherine R.
    Issue Date
    2023
    Advisor
    Lifshitz, Jonathan
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 08/04/2025
    Abstract
    Diffuse traumatic brain injury (TBI) leads to complex pathophysiological processes that result in clinical symptoms. Neuroinflammation and associated microglia activation are hallmark pathophysiological processes of diffuse TBI and contribute significantly to both damage and ensuing repair. Microglia are the resident innate immune cells in the brain and microglia function is linked to cellular morphology. Inflammatory signaling after diffuse TBI initiates microglia activation where microglia go from a ramified morphology (small soma with long, highly branched processes) to an activated morphology (swollen soma with enlarged, retracted processes). We also report an abundance of rod microglia (elongated soma with polarized processes) in the cortex after diffuse TBI. Rod microglia were first described in the early 1900’s and have since been sporadically reported in neurological conditions such as chemical exposure, viral infection, Alzheimer’s disease, Lewy Body dementia, ischemia, and TBI. Despite their occurrence across injury and disease, very little is known about rod microglia. Investigations have been limited to post-mortem histology using general microglia markers. The objective of this dissertation was to identify markers and develop tools to differentiate rod microglia from other microglia morphologies and confirm rod microglia mechanisms after TBI with the central hypothesis that rod microglia have a unique molecular profile compared to other microglia morphologies. First, we applied phage display biopanning to isolate antigen-binding domains specific to rod microglia compared to other microglia morphologies. We modified a novel discovery pipeline to develop antibody-mimetics from antigen-binding domains that can be validated for rod microglia specificity and used for downstream applications such as immunohistochemistry. Next, we investigated gene expression of rod microglia pathology with single nucleus RNA sequencing to provide insight into rod microglia function. We identified three distinct subclusters of microglia within the somatosensory cortex and inferred that those with inflammatory and neurological disease pathways may represent rod microglia. Finally, we used diffusion magnetic resonance imaging (MRI) to refine a non-invasive imaging signature of rod microglia. Water restriction was visible by diffusion MRI in the somatosensory cortex and corresponding histology reported activated microglia in regions where water restriction was observed. While not a marker of rod microglia specifically, novel post-image processing was sensitive to detect changes in microglia. This dissertation is the first step in developing and validating tools to target rod microglia. Until rod microglia mechanisms can be investigated with new tools, their role in the evolution, progression, and resolution of diffuse TBI pathophysiology remains unknown.
    Type
    Electronic Dissertation
    text
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Clinical Translational Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.