Effects of Active Galactic Nucleus Feedback on Cold Gas Depletion and Quenching of Central Galaxies
Affiliation
Steward Observatory, University of ArizonaIssue Date
2022-12-27
Metadata
Show full item recordPublisher
Institute of PhysicsCitation
Ma, W., Liu, K., Guo, H., Cui, W., Jones, M. G., Wang, J., ... & Davé, R. (2022). Effects of Active Galactic Nucleus Feedback on Cold Gas Depletion and Quenching of Central Galaxies. The Astrophysical Journal, 941(2), 205.Journal
Astrophysical JournalRights
© 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We investigate the influence of active galactic nucleus (AGN) feedback on the galaxy cold gas content and its connection to galaxy quenching in three hydrodynamical simulations of Illustris, IllustrisTNG, and SIMBA. By comparing to the observed atomic and molecular neutral hydrogen measurements for central galaxies, we find that Illustris overpredicts the cold gas masses in star-forming galaxies and significantly underpredicts them for quenched galaxies. IllustrisTNG performs better in this comparison than Illustris, but quenched galaxies retain too much cold gas compared with observations. SIMBA shows good agreement with observations, by depleting the global cold gas reservoir for quenched galaxies. We find that the discrepancies in IllustrisTNG are caused by its weak kinetic AGN feedback that only redistributes the cold gas from the inner disks to the outer regions and reduces the inner cold gas densities. It agrees with observations much better when only the cold gas within the stellar disk is considered to infer the star formation rates. From dependences of the cold gas reservoir on the black hole mass and Eddington ratio, we find that the cumulative energy release during the black hole growth is the dominant reason for the cold gas depletion and thus the galaxy quenching. We further measure the central stellar surface density within 1 kpc (Σ1) for the high-resolution run of IllustrisTNG and find a tight correlation between Σ1 and black hole mass. It suggests that the observed decreasing trend of cold gas mass with Σ1 is also a reflection of the black hole growth. © 2022. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
0004-637XVersion
Final published versionae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/aca326
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.