Dual Energy Management and Energy Saving Model for the Internet of Things (IOT) Using Solar Energy Harvesting (SEH)
Author
Albalawi, NasserIssue Date
2023Advisor
Rozenblit, Jerzy W.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Embargo
Release after 01/09/2026Abstract
The Internet of Things (IoT) is a fast-growing internet technology and has been incorporated into a wide range of fields. The optimal design of IoT systems has several challenges. The energy consumption of the devices is one of these IoT challenges, particularly for open-air IoT applications. The major energy consumption takes place due to inefficient medium access and routing, which can be addressed by the energy-efficient clustering method. In addition, the energy harvesting method can also play a major role in increasing the overall lifetime of the network. Therefore, in the proposed work, a novel energy-efficient dual energy management and saving model is proposed to manage the energy consumption of IoT networks. This model is based on dual technologies, i.e., energy-efficient clustering and solar energy harvesting (SEH). The proposed method is implemented for high-density sensor network applications. The dual elbow method is used for efficient clustering and guaranteed QoS. The model is able to manage energy consumption and increase the IoT network’s overall lifetime by optimizing IoT devices’ energy consumption. The protocol was simulated in MATLAB and compared to Fuzzy C-Means (FCM) and Time Division Multiple Access scheduling (TDMA) based Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol, based on network lifetime.Type
Electronic Dissertationtext
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Graduate CollegeElectrical & Computer Engineering