We are upgrading the repository! A content freeze is in effect until December 6th, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.
Climatic Influences on Establishment Pulses of Four Artemisia Species in Nevada
Citation
Hourihan, E., Schultz, B. W., & Perryman, B. L. (2018). Climatic influences on establishment pulses of four Artemisia species in Nevada. Rangeland Ecology & Management, 71(1), 77-86.Publisher
Society for Range ManagementJournal
Rangeland Ecology & ManagementAdditional Links
https://rangelands.org/Abstract
Shrub recruitment in arid and semiarid regions often occurs in pulses controlled by specific weather events. Previous research suggested that Wyoming sagebrush in Wyoming is no exception. We examined four species/subspecies of sagebrush in Nevada, in 2009 and 2010, to discover if evidence of recruitment pulses was contained in the annual growth-ring records. Sagebrush species and subspecies occur on a wide variety of ecological sites that require different management strategies. Species included black sagebrush (Artemisia nova A. Nelson), Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis Beetle & Young), Lahontan sagebrush (Artemisia arbuscula subsp. longicaulis Winward & McArthur), and low sagebrush (Artemisia arbuscula Nutt. ssp. arbuscula). Eighty stem sections were collected from each of 24 stands (6 stands per species or subspecies) at different geographic locations along east-west or north-south gradients where each species or subspecies naturally occurred. Annual growth-ring analysis was used to determine the year of establishment and the relationship between recruitment and weather events. Results indicated stand ages and locations were different (P > 0.001) among species and subspecies, and years of recruitment were strongly correlated with local and hemispheric weather patterns. Linear and multiple regressions modeled recruitment pulses for all four species. Weather-based predictor variables indicated complex interactions between recruitment and climatic controls. Pacific Decadal Oscillation (PDO) index variables were prominent predictors for all four species at their associated sites. Other important local weather variables included total annual precipitation the year before recruitment, the year of recruitment, and the year following recruitment. In Nevada and the Great Basin, it is imperative that successful sagebrush seeding technologies are discovered and implemented. Ecological restoration and postfire rehabilitation methods should be timed correctly with respect to precipitation patterns (positive phase PDO) and/or designed to mimic conditions responsible for natural sagebrush recruitment.Type
Articletext
Language
enISSN
1550-7424EISSN
1551-5028ae974a485f413a2113503eed53cd6c53
10.1016/j.rama.2017.08.002