Germination Ecology of Cenchrus biflorus Roxb.: Effects of Environmental Factors on Seed Germination
Citation
Peerzada, A. M., & Naeem, M. (2018). Germination ecology of Cenchrus biflorus Roxb.: Effects of environmental factors on seed germination. Rangeland Ecology & Management, 71(4), 424-432.Publisher
Society for Range ManagementJournal
Rangeland Ecology & ManagementAdditional Links
https://rangelands.org/Abstract
Better understanding related to germination and seedling emergence of plant species assists in predicting the potential distribution and provides insight for efficient management. Cenchrus biflorus Roxb. has been considered as potential forage species in arid environment due to its high nutritive values, prolific seed production, and tolerance to extreme temperature and prolonged drought conditions. A series of laboratory and greenhouse assays were conducted to determine the effect of different environmental factors, such as temperature, light, pH, salinity, osmotic potential, and seed burial depth on the germination and seedling emergence of C. biflorus. The maximum germination (95%) was recorded at 35°C/25°C, followed by 40°C/30°C; however, minimum germination was observed at 45°C/35°C (17.5%). Light significantly promoted the germination with maximum percentage (97.5%) when seeds were exposed to altering light and dark conditions (12/12 h). The osmotic potential for the 50% inhibition of C. biflorus germination was –0.4 MPa, although some seed germinated at –0.8 MPa (12.5%). Germination decreased from 97.5% to 12.5% as salinity stress increased from 0 mM to 200 mM sodium chloride (NaCl) with no germination > 200 mM. Seed germination was significantly affected by pH levels and was between 27.5% and 92.5% at 5–8 pH, respectively. No seedling emerged when seeds were placed on the soil surface; maximum seedling emergence (90%) at 2-cm burial depth and emergence decreased considerably as seeding depth increased above 2 cm. Its tolerance to drought and salinity make C. biflorus a potential candidate to be used as an alternative source during periods of forage scarcity under harsh climatic conditions, and it could possibly be used for rangeland rehabilitation purposes in arid environments.Type
Articletext
Language
enISSN
1550-7424EISSN
1551-5028ae974a485f413a2113503eed53cd6c53
10.1016/j.rama.2018.04.002