Atmospheric Retrieval of L Dwarfs: Benchmarking Results and Characterizing the Young Planetary Mass Companion HD 106906 b in the Near-infrared
Name:
Adams_2023_AJ_166_192.pdf
Size:
25.22Mb
Format:
PDF
Description:
Final Published Version
Author
Adams, A.D.Meyer, M.R.
Howe, A.R.
Burningham, B.
Daemgen, S.
Fortney, J.
Line, M.
Marley, M.
Quanz, S.P.
Todorov, K.
Affiliation
Lunar & Planetary Laboratory, University of ArizonaIssue Date
2023-10-13
Metadata
Show full item recordPublisher
American Astronomical SocietyCitation
Arthur D. Adams et al 2023 AJ 166 192Journal
Astronomical JournalRights
© 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We present model constraints on the atmospheric structure of HD 106906 b, a planetary-mass companion orbiting at a ∼700 au projected separation around a 15 Myr old stellar binary, using the APOLLO retrieval code on spectral data spanning 1.1-2.5 μm. C/O ratios can provide evidence for companion formation pathways, as such pathways are ambiguous both at wide separations and at star-to-companion mass ratios in the overlap between the distributions of planets and brown dwarfs. We benchmark our code against an existing retrieval of the field L dwarf 2MASSW J2224-0158, returning a C/O ratio consistent with previous fits to the same JHK s data, but disagreeing in the thermal structure, cloud properties, and atmospheric scale height. For HD 106906 b, we retrieve C/O = 0.53 − 0.25 + 0.15 , consistent with the C/O ratios expected for HD 106906's stellar association and therefore consistent with a stellar-like formation for the companion. We find abundances of H2O and CO near chemical equilibrium values for a solar metallicity but a surface gravity lower than expected, as well as a thermal profile with sharp transitions in the temperature gradient. Despite high signal-to-noise ratio and spectral resolution, more accurate constraints necessitate data across a broader wavelength range. This work serves as preparation for subsequent retrievals in the era of JWST, as JWST's spectral range provides a promising opportunity to resolve difficulties in fitting low-gravity L dwarfs and also underscores the need for simultaneous comparative retrievals on L-dwarf companions with multiple retrieval codes. © 2023. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
0004-6256Version
Final Published Versionae974a485f413a2113503eed53cd6c53
10.3847/1538-3881/acfb87
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.