• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Mueller Polarimetry for Quantifying the Stress Optic Coefficient in the Infrared

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    126900C.pdf
    Size:
    4.401Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Parkinson, J.
    Coronato, P.
    Greivenkamp, J.
    Vukobratovich, D.
    Kupinski, M.
    Affiliation
    Wyant College of Optical Sciences, University of Arizona
    Issue Date
    2023-10-03
    
    Metadata
    Show full item record
    Publisher
    SPIE
    Citation
    Jeremy Parkinson, Patrick Coronato, Jake Greivenkamp, Daniel Vukobratovich, Meredith Kupinski, "Mueller polarimetry for quantifying the stress optic coefficient in the infrared," Proc. SPIE 12690, Polarization Science and Remote Sensing XI, 126900C (3 October 2023); https://doi.org/10.1117/12.2676478
    Journal
    Proceedings of SPIE - The International Society for Optical Engineering
    Rights
    © 2023 SPIE. (2023) Published by SPIE.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    The stress optic coefficient of an infrared transmitting material was measured at room temperature at a wavelength of 1550nm. This work discusses a Mueller matrix imaging experiment to measure the stress optic coefficient, observe the spatial distribution of birefringence, and quantify experimental sources of uncertainty. A one-inch diameter disk of sample material was diametrically loaded with increasing force, and linear retardance was measured in the central region. Finite element and analytical modeling was done to estimate the magnitude of stress in this central region. A Rotating Retarder Mueller Matrix Imaging Polarimeter measured the spatial distribution of linear retardance. The retardance is related to the change in birefringence with stress magnitude. The slope of this linear fit is the stress optic coefficient. The stress optic coefficient of the infrared transmitting material was measured to be 1.89 ± 0.1424 [TPa]−1. To test the precision of our stress optic coefficient measurement procedure, a 1-inch diameter N-BK7 disk was measured at a wavelength of 1550nm and compared with industry-accepted values. The stress optic coefficient of N-BK7 was measured as 2.83 ± 0.1057[TPa]−1. The published N-BK7 value measured at visible wavelengths is 2.77 [TPa]−1 ± 3%.1-3 This agreement validates the experimental Mueller matrix imaging methods and supports the common assumption of minor wavelength dependence of the stress optic coefficient. © 2023 SPIE.
    Note
    Immediate access
    ISSN
    0277-786X
    ISBN
    978-151066594-1
    DOI
    10.1117/12.2676478
    Version
    Final Published Version
    ae974a485f413a2113503eed53cd6c53
    10.1117/12.2676478
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.