Name:
Sheeley_2023_ApJ_959_7.pdf
Size:
899.2Kb
Format:
PDF
Description:
Final Published Version
Author
Sheeley, N.R., Jr.Affiliation
Lunar and Planetary Laboratory, University of ArizonaIssue Date
2023-11-28
Metadata
Show full item recordPublisher
Institute of PhysicsCitation
Neil R. Sheeley Jr. 2023 ApJ 959 7Journal
Astrophysical JournalRights
© 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
This paper uses wavelet transforms to look for the rotational frequencies of the Sun’s mean line-of-sight magnetic field. For a sufficiently high wavelet frequency, the spectra of the dipole, quadrupole, and hexapole field components each show a time-dependent fine structure with periods in the range of 26.5-30 days and their harmonics. These maps confirm that a large enhancement of power at 30 days occurred in the dipole field during 1989-1990, as recorded previously using Fourier techniques. In addition, during some years the maps show power at 26.5 days (or its harmonics), which is clearly distinguishable from the rotation period of 26.9-27.0 days at the Sun’s equator. In at least one case, the 26.5-day period was a wave phenomenon caused by the systematic eruption of active regions at progressively more western locations in the Carrington coordinate system, as if the flux were emerging from a fixed longitude in a faster-rotating subsurface layer. Based on previous studies of the mean field, I conclude that the enhanced wavelet patterns in this paper are regions where magnetic flux is emerging in configurations that strengthen the Sun’s horizontal dipole, quadrupole, and hexapole fields, and (in the case of the more slowly rotating patterns) where this flux is being transported to midlatitudes whose rotation periods are in the range of 28-30 days. © 2023. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
0004-637XVersion
Final Published Versionae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/acfc4a
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.

