• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Valence transition theory of the pressure-induced dimensionality crossover in superconducting Sr14-xCaxCu24 O41

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    PhysRevB.108.134510.pdf
    Size:
    475.5Kb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Song, J.-P.
    Clay, R.T.
    Mazumdar, S.
    Affiliation
    Department of Physics, University of Arizona
    Issue Date
    2023-10-23
    
    Metadata
    Show full item record
    Publisher
    American Physical Society
    Citation
    Jeong-Pil Song, R. Torsten Clay, and Sumit Mazumdar Phys. Rev. B 108, 134510 – Published 23 October 2023
    Journal
    Physical Review B
    Rights
    © 2023 American Physical Society.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    One of the strongest justifications for the continued search for superconductivity within the single-band Hubbard Hamiltonian originates from the apparent success of single-band ladder-based theories in predicting the occurrence of superconductivity in the cuprate coupled-ladder compound Sr14-xCaxCu24O41. Recent theoretical works have, however, shown the complete absence of quasi-long-range superconducting correlations within the hole-doped multiband ladder Hamiltonian including realistic Coulomb repulsion between holes on oxygen sites and oxygen-oxygen hole hopping. Experimentally, superconductivity in Sr14-xCaxCu24O41 occurs only under pressure and is preceded by dramatic transition from one to two dimensions that remains not understood. We show that understanding the dimensional crossover requires adopting a valence transition model within which there occurs transition in Cu-ion ionicity from +2 to +1, with transfer of holes from Cu to O ions [S. Mazumdar, Phys. Rev. B 98, 205153 (2018)10.1103/PhysRevB.98.205153]. The driving force behind the valence transition is the closed-shell electron configuration of Cu1+, a feature shared by cations of all oxides with a negative charge-transfer gap. We make a falsifiable experimental prediction for Sr14-xCaxCu24O41 and discuss the implications of our results for layered two-dimensional cuprates. © 2023 American Physical Society.
    Note
    Immediate access
    ISSN
    2469-9950
    DOI
    10.1103/PhysRevB.108.134510
    Version
    Final Published Version
    ae974a485f413a2113503eed53cd6c53
    10.1103/PhysRevB.108.134510
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.