Name:
Campbell_2023_Planet._Sci._J._ ...
Size:
1.516Mb
Format:
PDF
Description:
Final Published Version
Author
Campbell, T.Battle, A.
Gray, B.
Chesley, S.R.
Farnocchia, D.
Pearson, N.
Halferty, G.
Reddy, V.
Furfaro, R.
Affiliation
Department of Aerospace & Mechanical Engineering, The University of ArizonaLunar & Planetary Laboratory, The University of Arizona
Department of Systems & Industrial Engineering, The University of Arizona
Issue Date
2023-11-16
Metadata
Show full item recordPublisher
Institute of PhysicsCitation
Tanner Campbell et al 2023 Planet. Sci. J. 4 217Journal
Planetary Science JournalRights
© 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
On 2022 March 4, the object known as WE0913A crashed into the Moon after several close flybys of the Earth and the Moon in the previous three months. Leading up to impact, the identity of the lunar impactor was up for debate, with two possibilities: the Falcon 9 from the DSCOVR mission or the Long March 3C from the Chang’e 5-T1 mission. In this paper, we present a trajectory and spectroscopic analysis using ground-based telescope observations to show conclusively that WE0913A is the Long March 3C rocket body (R/B) from the Chang’e 5-T1 mission. Analysis of photometric light curves collected before impact give a spin period of 185.221 ± 6.540 s before the first close Earth flyby on 2022 January 20 and a period of 177.754 ± 0.779 s, both at a 1σ confidence level, before the second close Earth flyby on 2022 February 8. Using Markov Chain Monte Carlo sampling and a predictive light curve simulation based on an anisotropic Phong reflection model, we estimate both physical and dynamical properties of the Chang’e 5-T1 R/B at the start of an observation epoch. The results from the Bayesian analysis imply that there may have been additional mass on the front of the rocket body. Using our predicted impact location, the Lunar Reconnaissance Orbiter was able to image the crater site approximately 7.5 km from the prediction. Comparing the pre- and post-impact images of the location shows two distinct craters that were made, supporting the hypothesis that there was additional mass on the rocket body. © 2023. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
2632-3338Version
Final published Versionae974a485f413a2113503eed53cd6c53
10.3847/PSJ/acffb8
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.