A self-supervised learning-based approach to clustering multivariate time-series data with missing values (SLAC-Time): An application to TBI phenotyping
Affiliation
Department of Systems and Industrial Engineering, University of ArizonaDepartment of Biomedical Engineering, University of Arizona
Issue Date
2023-05-22Keywords
clusteringMultivariate time-series data
Self-supervised Learning
Transformer
Traumatic brain injury
Metadata
Show full item recordPublisher
Academic Press Inc.Citation
Ghaderi, H., Foreman, B., Nayebi, A., Tipirneni, S., Reddy, C. K., & Subbian, V. (2023). A self-supervised learning-based approach to clustering multivariate time-series data with missing values (SLAC-Time): An application to TBI phenotyping. Journal of Biomedical Informatics, 143, 104401.Rights
© 2023 Elsevier Inc. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Self-supervised learning approaches provide a promising direction for clustering multivariate time-series data. However, real-world time-series data often include missing values, and the existing approaches require imputing missing values before clustering, which may cause extensive computations and noise and result in invalid interpretations. To address these challenges, we present a Self-supervised Learning-based Approach to Clustering multivariate Time-series data with missing values (SLAC-Time). SLAC-Time is a Transformer-based clustering method that uses time-series forecasting as a proxy task for leveraging unlabeled data and learning more robust time-series representations. This method jointly learns the neural network parameters and the cluster assignments of the learned representations. It iteratively clusters the learned representations with the K-means method and then utilizes the subsequent cluster assignments as pseudo-labels to update the model parameters. To evaluate our proposed approach, we applied it to clustering and phenotyping Traumatic Brain Injury (TBI) patients in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study. Clinical data associated with TBI patients are often measured over time and represented as time-series variables characterized by missing values and irregular time intervals. Our experiments demonstrate that SLAC-Time outperforms the baseline K-means clustering algorithm in terms of silhouette coefficient, Calinski Harabasz index, Dunn index, and Davies Bouldin index. We identified three TBI phenotypes that are distinct from one another in terms of clinically significant variables as well as clinical outcomes, including the Extended Glasgow Outcome Scale (GOSE) score, Intensive Care Unit (ICU) length of stay, and mortality rate. The experiments show that the TBI phenotypes identified by SLAC-Time can be potentially used for developing targeted clinical trials and therapeutic strategies.Note
12 month embargo; first published 22 May 2023EISSN
1532-0480PubMed ID
37225066Version
Final accepted manuscriptae974a485f413a2113503eed53cd6c53
10.1016/j.jbi.2023.104401
Scopus Count
Collections
Related articles
- Discovery of generalizable TBI phenotypes using multivariate time-series clustering.
- Authors: Ghaderi H, Foreman B, Reddy CK, Subbian V
- Issue date: 2024 Sep
- Discovery of Generalizable TBI Phenotypes Using Multivariate Time-Series Clustering.
- Authors: Ghaderi H, Foreman B, Reddy CK, Subbian V
- Issue date: 2024 Aug 20
- Unsupervised Machine Learning Reveals Novel Traumatic Brain Injury Patient Phenotypes with Distinct Acute Injury Profiles and Long-Term Outcomes.
- Authors: Folweiler KA, Sandsmark DK, Diaz-Arrastia R, Cohen AS, Masino AJ
- Issue date: 2020 Jun 15
- Identifying TBI Physiological States by Clustering Multivariate Clinical Time-Series Data.
- Authors: Ghaderi H, Foreman B, Nayebi A, Tipirneni S, Reddy CK, Subbian V
- Issue date: 2023
- Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
- Authors: Crider K, Williams J, Qi YP, Gutman J, Yeung L, Mai C, Finkelstain J, Mehta S, Pons-Duran C, Menéndez C, Moraleda C, Rogers L, Daniels K, Green P
- Issue date: 2022 Feb 1