Show simple item record

dc.contributor.authorBraude, A.S.
dc.contributor.authorMontmessin, F.
dc.contributor.authorSchneider, N.M.
dc.contributor.authorGupta, S.
dc.contributor.authorJain, S.K.
dc.contributor.authorLefèvre, F.
dc.contributor.authorMäättänen, A.
dc.contributor.authorVerdier, L.
dc.contributor.authorFlimon, Z.
dc.contributor.authorJiang, F.Y.
dc.contributor.authorYelle, R.V.
dc.contributor.authorDeighan, J.
dc.contributor.authorCurry, S.M.
dc.date.accessioned2024-08-03T03:13:29Z
dc.date.available2024-08-03T03:13:29Z
dc.date.issued2023-05-02
dc.identifier.citationBraude, A. S., Montmessin, F., Schneider, N. M., Gupta, S., Jain, S. K., Lefèvre, F., et al. (2023). Seasonal, latitudinal, and longitudinal trends in nighttime ozone vertical structure on Mars from MAVEN/IUVS stellar occultations. Journal of Geophysical Research: Planets, 128, e2022JE007697. https://doi.org/10.1029/2022JE007697
dc.identifier.issn2169-9097
dc.identifier.doi10.1029/2022JE007697
dc.identifier.urihttp://hdl.handle.net/10150/673009
dc.description.abstractStellar occultation measurements conducted by the Mars Atmosphere and Volatile and EvolutioN/Imaging UltraViolet Spectrograph instrument were able to make vertically resolved measurements of ozone density in the middle atmosphere of Mars that offered good coverage with respect to latitude, longitude, and local time. These measurements were used to identify systematic variations in the vertical structure of ozone with longitude that could be distinguished from general trends in the evolution of ozone with respect to season and latitude. A total of 583 individual nightside occultations between Martian years 32 and 36 were analyzed, of which 224 were confirmed to have ozone, all found between Ls = 15°–165°. Close to aphelion (Ls = 60°–90°), peak ozone densities between 30 and 40 km altitude were observed to be within error of model predictions at all measured latitudes, but diverged from model predictions before and after this time. At low latitudes, seasonal changes were seen to have the greatest effect on the observed vertical structure of ozone, with detached ozone layer densities at altitudes above 30 km usually varying within approximately a factor of two along a given latitudinal band at a given time of year. Nonetheless, evidence of a persistent regional enhancement of ozone abundance was observed over equatorial latitudes during the aphelion season, spanning a longitude range of approximately 50°–130°E longitude. Planetary waves were clearly observed at higher Southern latitudes during Southern winter, often resulting in order of magnitude variations in ozone density with longitude. © 2023 The Authors.
dc.language.isoen
dc.publisherJohn Wiley and Sons Inc
dc.rights© 2023 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License.
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.titleSeasonal, Latitudinal, and Longitudinal Trends in Nighttime Ozone Vertical Structure on Mars From MAVEN/IUVS Stellar Occultations
dc.typeArticle
dc.typetext
dc.contributor.departmentLunar and Planetary Laboratory, University of Arizona
dc.identifier.journalJournal of Geophysical Research: Planets
dc.description.noteOpen access article
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
dc.eprint.versionFinal Published Version
dc.source.journaltitleJournal of Geophysical Research: Planets
refterms.dateFOA2024-08-03T03:13:29Z


Files in this item

Thumbnail
Name:
Seasonal_Trends.pdf
Size:
8.666Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record

© 2023 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License.
Except where otherwise noted, this item's license is described as © 2023 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License.