Assessment of CMIP5 and CMIP6 AMIP Simulated Clouds and Surface Shortwave Radiation Using ARM Observations over Different Climate Regions
Name:
clim-JCLI-D-23-0247.1.pdf
Size:
27.44Mb
Format:
PDF
Description:
Final Published Version
Affiliation
Department of Hydrology and Atmospheric Sciences, The University of ArizonaIssue Date
2023-11-23
Metadata
Show full item recordPublisher
American Meteorological SocietyCitation
Zheng, X., C. Tao, C. Zhang, S. Xie, Y. Zhang, B. Xi, and X. Dong, 2023: Assessment of CMIP5 and CMIP6 AMIP Simulated Clouds and Surface Shortwave Radiation Using ARM Observations over Different Climate Regions. J. Climate, 36, 8475–8495, https://doi.org/10.1175/JCLI-D-23-0247.1.Journal
Journal of ClimateRights
© 2023 American Meteorological Society.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The simulations of clouds and surface radiation from 10 CMIP6 models and their CMIP5 predecessors are compared to the ARM ground-based observations over different climate regions. Compared to the ARM radar-lidar derived total cloud fractions (CFT) and cloud fraction vertical distributions over the six selected sites, both CMIP5 and CMIP6 significantly underestimated CFT and low-level CF over the Northern Hemispheric midlatitude sites (SGPC1 and ENAC1), although the biases are generally smaller in CMIP6. Over the tropical oceanic site (TWPC2), 5 out of 10 CMIP6 models better simulated low-level CF than their CMIP5 predecessors. CMIP6 simulations generally agreed well with the ARM observations in CFT and cloud fraction vertical distributions over the tropical continental (MAOM1) and coastal (TWPC3) sites but missed the transitions between dry and wet seasons, similar to CMIP5 simulations. The improvements in downwelling shortwave fluxes (SWdn) at the surface from the majority of CMIP6 compared to CMIP5 primarily resulted from the improved cloud fraction simulations, especially over the SGPC1, ENAC1, and TWPC3 sites. By contrast, both CMIP5 and CMIP6 models exhibited diverse performances of clouds and shortwave radiation over the Arctic site (NSAC1), where CMIP6 models produced more clouds than CMIP5 models, especially for the low-level clouds. The comparisons between observations and CMIP5 and CMIP6 simulations provide valuable quantitative assessments of the accuracy of mean states and variabilities in the model simulations and shed light on general directions to improve climate models in different regions. © 2023 American Meteorological Society. All rights reserved.Note
6 month embargo; first published 23 November 2023ISSN
0894-8755Version
Final Published Versionae974a485f413a2113503eed53cd6c53
10.1175/JCLI-D-23-0247.1