JWST Imaging of Edge-on Protoplanetary Disks. I. Fully Vertically Mixed 10 μm Grains in the Outer Regions of a 1000 au Disk
Name:
Duchene_2024_AJ_167_77.pdf
Size:
1.486Mb
Format:
PDF
Description:
Final Published Version
Author
Duchêne, G.Ménard, F.
Stapelfeldt, K.R.
Villenave, M.
Wolff, S.G.
Perrin, M.D.
Pinte, C.

Tazaki, R.
Padgett, D.L.
Affiliation
Department of Astronomy, Steward Observatory, University of ArizonaIssue Date
2024-01-25
Metadata
Show full item recordPublisher
American Astronomical SocietyCitation
Gaspard Duchêne et al 2024 AJ 167 77Journal
Astronomical JournalRights
© 2024. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Scattered light imaging of protoplanetary disks provides key insights on the geometry and dust properties in the disk surface. Here, we present James Webb Space Telescope (JWST) 2-21 μm images of a 1000 au radius edge-on protoplanetary disk surrounding an 0.4 M ⊙ young star in Taurus, Two Micron All Sky Survey (2MASS) J04202144 + 2813491. These observations represent the longest wavelengths at which a protoplanetary disk is spatially resolved in scattered light. We combine these observations with Hubble Space Telescope optical images and Atacama Large Millimeter/submillimeter Array continuum and CO mapping. We find that the changes in the scattered light disk morphology are remarkably small across a factor of 30 in wavelength, indicating that dust in the disk surface layers is characterized by an almost gray opacity law. Using radiative transfer models, we conclude that grains up to ≳10 μm in size are fully coupled to the gas in this system, whereas grains ≳100 μm are strongly settled toward the midplane. Further analyses of these observations, and similar ones of other edge-on disks, will provide strong empirical constraints on disk dynamics and evolution and grain growth models. In addition, the 7.7 and 12. μm JWST images reveal an X-shaped feature located above the warm molecular layer traced by CO line emission. The highest elevations at which this feature is detectable roughly match the maximal extent of the disk in visible wavelength scattered light as well as of an unusual kinematic signature in CO. We propose that these phenomena could be related to a disk wind entraining small dust grains. © 2024. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
0004-6256Version
Final Published Versionae974a485f413a2113503eed53cd6c53
10.3847/1538-3881/acf9a7
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2024. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.